• Title/Summary/Keyword: elastic wave equations

Search Result 107, Processing Time 0.022 seconds

A Study of Theoretical Methods for Estimating Void Ratio Based on the Elastic Wave Velocities (탄성파 속도를 이용한 간극비 산출 식의 고찰)

  • Lee, Jong-Sub;Park, Chung-Hwa;Yoon, Sung-Min;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2013
  • The void ratio is an important parameter for reflecting the soil behavior including physical property, compressibility, and relative density. The void ratio can be obtained by laboratory test with extracted soil samples. However, the specimen has a possibility to be easily disturbed due to the stress relief when extracting, vibration during transportation, and error in experimental process. Thus, the theoretical equations have been suggested for obtaing the void ratio based on the elastic wave velocities. The objective of this paper is to verify the accuracy of the proposed analytical solution through the error norm. The paper covers the theoretical methods of Wood, Gassmann and Foti. The elastic wave velocity is determined by the Field Velocity Probe in the southern part of Korean Peninsular. And the rest parameters are assumed based on the reference values. The Gassmann method shows the high reliability on determining the void ratio. The error norm is also analyzed as substitution of every parameter. The results show every equation has various characteristics. Thus, this paper may be widely applied for obtaining the void ratio according to the field condition.

A Study on the Theory and Its Verification of Dynamic Analysis Program (MPDAP) for Modelling of Saturated Multi Phase Porous Media (포화된 다공성 지반의 모델링을 위한 동적해석 프로그램(MPDAP)의 이론 및 이의 검증에 괄한 연구)

  • 김광진;문홍득
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.5-18
    • /
    • 1997
  • In order to make reliable ground shock predictions in saturated geological media, it is necessary to use multi -phase material models and numerical codes. This paper presents the results of theoretical study of the fundamental behavior of multi-phase porous media subjected to high dynanlic loadings, and deals with the development of numerical code MPDAP with JWL(Jones-Wilkins-Lee) model, which is capable of considering the kinds and characters of explosives. To check the global equilhorium equations of the numerical code, we carried out some verifications. In the cases of the elastic spherical wave propagation in a single phase medium, one-dimensional linear ronsolidation, and one timensional wave propagation in saturated linear elastic soils and rocks, the results calculated by MPDAP show close agreement with closed-form solutions or numerical solutions generated with two phase code.

  • PDF

Analysis of Multi-Mode Reflection and Transmission Coefficients of a Lamb Wave Across a Rectangular Notch (사각형 노치에 대한 램파의 다중 모드 반사와 투과 계수 해석)

  • Kim, Byung-Soo;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.129-139
    • /
    • 2008
  • The purpose of the present work is to derive the reflection and transmission coefficients of $S_0\;and\;A_0$ mode Lamb waves in relation to the geometry of a rectangular notch when the waves propagate across the notch in an elastic plate. Firstly, the excitable modes of the Lamb wave were analyzed with respect to the plate thickness. The scattering phenomena were divided into three independent processes according to the boundary shape of the notch and the direction of the wave propagation. Linear equations for each process were derived with corresponding free or continuous boundary conditions to analyze the scattered waves. By the rule of linear superposition, the waves scattered at each process were summed for each mode. Then the steady-state reflection and transmission coefficients of the scattered waves were determined so that the difference of energy flux between the incident and the scattered waves would remain within 4%.

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

Finite Element Analysis with Paraxial Boundary Condition (파진행 문제를 위한 Paraxial 경계조건의 유한요소해석)

  • Kim, Hee-Seok;Lee, Jong-She
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.303-309
    • /
    • 2007
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. In this paper we focus on both first and second order paraxial boundary conditions(PBCs) in the framework of variational approximations which are based on paraxial approximations of the scalar and elastic wave equations. We propose a penalty function method for the treatment of PBCs and apply these into finite element analysis. The numerical verification of the efficiency is carried out through comparing PBCs with Lysmer-Kuhlemeyer's boundary conditions.

In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields

  • Kiani, Keivan;Gharebaghi, Saeed Asil;Mehri, Bahman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane frequencies commonly grow with the in-plane magnetic field. However, the transmissibility of the out-of-plane waves rigorously depends on the magnetic field strength, direction of the propagated transverse waves, small-scale parameter, and thickness of the nanoplate. The criterion for safe transferring of the out-of-plane waves through the conducting nanoplate immersed in a bidirectional magnetic field is also explained and discussed.

Elastic shell model: Effect of Young's Modulus on the vibration of double-walled CNTs

  • Hussain, Muzamal;Asghar, Sehar;Khadimallah, Mohamed Amine;Ayed, Hamdi;Banoqitah, Essam Mohammed;Loukil, Hassen;Ali, Imam;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.471-479
    • /
    • 2022
  • In this paper, vibrational attributes of double-walled carbon nanotubes (CNTs) has been studied based upon nonlocal elastic shell theory. The implication of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. The comparison of local and nonlocal model has been overtly explored by means of scaling parameter. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of changing mechanical parameter Young's modulus has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT

  • Bennai, Riadh;Fourn, Hocine;Nebab, Mokhtar;Atmane, Redhwane Ait;Mellal, Fatma;Atmane, Hassen Ait;Benadouda, Mourad;Touns, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.169-183
    • /
    • 2022
  • In this article, vibrational behavior and wave propagation characteristics in (FG) functionally graded plates resting on Kerr foundation with three parameters is studied using a 2D dimensional (HSDT) higher shear deformation theory. The new 2D higher shear deformation theory has only four variables in field's displacement, which means has few numbers of unknowns compared with others theories. The shape function used in this theory satisfies the nullity conditions of the shear stresses on the two surfaces of the FG plate without using shear correction factors. The FG plates are considered to rest on the Kerr layer, which is interconnected with a Pasternak-Kerr shear layer. The FG plate is materially inhomogeneous. The material properties are supposed to vary smoothly according to the thickness of the plate by a Voigt's power mixing law of the volume fraction. The equations of motion due to the dynamics of the plate resting on a three-parameter foundation are derived using the principle of minimization of energies; which are then solved analytically by the Navier technique to find the vibratory characteristics of a simply supported plate, and the wave propagation results are derived by using the dispersion relations. Perceivable numerical results are fulfilled to evaluate the vibratory and the wave propagation characteristics in functionally graded plates and some parameters such wave number, thickness ratio, power index and foundation parameters are discussed in detail.

Analysis of Engineering Properties to Basalt in Cheju island (제주도 현무암의 공학적 특성 분석)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk;Kim, Jun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • To investigate the engineering properties of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area. The laboratory tests such as absorption test, specific gravity test, permeability test, Schmidt hammer test, elastic wave test and uniaxial compressive testwere carried out for the collected rock samples. The absorption, the specific gravity, the permeability, the elastic wave velocity and uniaxial compressive strengthwere investigated and analyzed as the results of these tests. As the result of regression analysis for the relationship between the rebound values from Schmidt hammer test and the uniaxial compressive strengths from uniaxial compressive test, especially, estimation equations were proposed using the rebound values from Schmidt hammer test. Therefore, the simple method to estimate the uniaxial compressive strength was provided.

  • PDF

Attenuation of quasi-Lamb waves in a hydroelastic system "elastic plate+compressible viscous fluid+rigid wall"

  • Akbarov, Surkay D.;Negin, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.443-459
    • /
    • 2022
  • The paper studies the dispersion and attenuation of propagating waves in the "plate+compressible viscous fluid layer" system in the case where the fluid layer flow is restricted with a rigid wall, and in the case where the fluid layer has a free face. The motion of the plate is described by the exact equations of elastodynamics and the flow of the fluid by the linearized Navier-Stokes equations for compressible barotropic Newtonian viscous fluids. Analytical expressions are obtained for the amplitudes of the sought values, and the dispersion equation is derived using the corresponding boundary and compatibility conditions. To find the complex roots of the dispersion equation, an algorithm based on equating the modulus of the dispersion determinant to zero is developed. Numerical results on the dispersion and attenuation curves for various pairs of plate and fluid materials under different fluid layer face conditions are presented and discussed. Corresponding conclusions on the influence of the problem parameters on the dispersion and attenuation curves are made and, in particular, it is established that the change of the free face boundary condition with the impermeability condition can influence the dispersion and attenuation curves not only in the quantitative, but also in the qualitative sense.