• 제목/요약/키워드: elastic stress method

검색결과 988건 처리시간 0.026초

유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석 (Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method)

  • 박재학;박상윤
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.

다방향으로 입체 보강된 복합재 노즐의 열탄성해석 (Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle)

  • 유재석;김광수;이상의;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

인공신경회로망을 이용한 탄산가스 아크 용접의 잔류응력 예측에 관한 연구 (A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$ Arc Welding)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.77-88
    • /
    • 1995
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO$_{2}$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a backpropagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the ailure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$Arc welding

  • Cho, Y.;Rhee, S.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • 제1권2호
    • /
    • pp.51-60
    • /
    • 2001
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermo-mechanical analysis has been performed for the $CO_2$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a back propagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the failure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

Influence of column yielding on degree of consolidation of soft foundations improved by deep mixed columns

  • Jiang, Yan;Han, Jie;Zheng, Gang
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.173-194
    • /
    • 2014
  • Laboratory and field data showed that deep mixed (DM) columns accelerated the rate of consolidation of the soft foundations. Most analyses of consolidation of DM column-improved foundations so far have been based on the elastic theory. In reality, the DM columns may yield due to the stress concentration from the soft soil and its limited strength. The influence of column yielding on the degree of consolidation of the soft foundation improved by DM columns has not been well investigated. A three-dimensional mechanically and hydraulically-coupled numerical method was adopted in this study to investigate the degree of consolidation of the DM column foundation considering column yielding. A unit cell model was used, in which the soil was modeled as a linearly elastic material. For a comparison purpose, the DM column was modeled as an elastic or elastic-plastic material. This study examined the aspects of stress transfer, settlement, and degree of consolidation of the foundations without or with the consideration of the yielding of the DM column. A parametric study was conducted to investigate the influence of the column yielding on the stress concentration ratio, settlement, and average degree of consolidation of the DM column foundation. The stress concentration ratio increased and then decreased to reach a constant value with the increase of the column modulus and time. A simplified method was proposed to calculate the maximum stress concentration ratios under undrained and drained conditions considering the column yielding. The simplified method based on a composite foundation concept could conservatively estimate the consolidation settlement. An increase of the column modulus, area replacement ratio, and/or column permeability increased the rate of consolidation.

고층건물 콘크리트 슬래브의 건조수축응력 해석에서 철근의 구속효과 (The Effect of Internal Restraint of Rebar in Shrinkage Stress Analysis of Concrete Slab in Multistory Building)

  • 김한수;김재건
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.496-499
    • /
    • 2006
  • In this study, a practical method of shrinkage stress analysis on concrete slab in multi-story building is proposed, which considers both internal restraint and external restraint variation resulting from construction sequence. The shrinkage stress due to external restraint is obtained by multiplying relaxation coefficient to elastic shrinkage stress. The additional shrinkage stress due to internal restraint is obtained by residual strain of the elastic analysis. A verification example was analyzed and compared by the proposed method and commercial analysis program that is capable of time-dependent analysis of concrete. The results of 10-story example building show that the internal restraint of reinforcement increases the shrinkage stress considerably at the slabs under loose external restraint.

  • PDF

다중보강링을 갖는 압출금형의 치수최적설계 (Optimal Design of Dimension of Extrusion Die with Multi Stress Rings)

  • 안성찬;임용택
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2211-2218
    • /
    • 2002
  • In this study, an optimal design study has been made to determine dimensions of die and multi stress rings for extrusion process. For this purpose, a thermo-rigid-viscoplastic finite element program, CAMPform, was used fur forming analysis of extrusion process and a developed elastic finite element program fur elastic stress analysis of the die set including stress rings. And an optimization program, DOT, was employed for the optimization analysis. From this investigation, it was found out that the amount of shrink fitting incurred by the order of assembly of the die set should be taken into account for optimization when the multi stress rings are used in practice. In addition, it is construed that the proposed design method can be beneficial fur improving the tool life of cold extrusion die set.

Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane

  • Yaylaci, Murat;Terzi, Cemalettin;Avcar, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.775-783
    • /
    • 2019
  • The present study deals with the numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic half plane compressed with a rigid punch. In this context, Finite Element Method (FEM) based software called ANSYS and ABAQUS are used. It is assumed that the elastic layers have different elastic constants and heights and the external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under the assumptions that the contact between two elastic layers, and between the rigid stamp are frictionless, the effect of gravity force is neglected. To validate the constructed model and obtained results a comparison is performed with the analytical results in literature. The numerical results for normal stresses and shear stresses are obtained for various parameters of load, material and geometry and are tabulated and illustrated.

RESIDUAL STRESS MEASUREMENT ON THE BUTT-WELDED AREA BY ELECTRONIC SPECKLE PATTERN INTERFEROMETRY

  • KIM, KYEONGSUK;CHOI, TAEHO;NA, MAN GYUN;JUNG, HYUNCHUL
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.115-125
    • /
    • 2015
  • Background: Residual stress always exists on any kind of welded area. This residual stress can cause the welded material to crack or fracture. For many years, the hole-drilling method has been widely used for measuring residual stress. However, this method is destructive. Nowadays, electronic speckle pattern interferometry (ESPI) can be used to measure residual stress with or without the hole-drilling method. ESPI is an optical nondestructive testing methods that use the speckle effect. Mechanical properties can be measured by calculation of the phase difference by the variation of temperature, pressure, or loading force. Methods: In this paper, the residual stress on the butt-welded area is measured by using ESPI with a suggested numerical calculation. Two types of specimens are prepared. Type I is made of pure base metal part and type II has a welded part at the center. These specimens are tensile tested with a material test system. At the same time, the ESPI system was applied to this test. Results: From the results of ESPI, the elastic modulus and the residual stress around the welded area can be calculated and estimated. Conclusion: With this result, it is confirmed that the residual stress on the welded area can be measured with high precision by ESPI.

단순봉합모델을 이용한 문합에서 탄성경계층의 두께 변화에 따른 기계역학적 거동에 관한 연구 (The Study on the Mechanical Behavior of the Anastomosis with respect to the Thickness Variation of Elastic Foundation Using Simplified Suturing Model)

  • 이성욱;한근조;심재준;한동섭;김태형
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.188-195
    • /
    • 2004
  • In this paper we analyzed the mechanical behavior with respect to the thickness variation of elastic foundation(fatty tissue) in end-to-end anastomosis. This study considered the preliminary deformed shape induced by suturing in the anastomosis of coronary artery and PTFE with different diameters using simplified suturing model and the fatty tissue surrounding heart and coronary artery for more accurate result using finite element method. Area compliance(CA) was used to analyze the final deformed shape of the anastomotic part with respect to the thickness variation of fatty tissue under mean blood pressure, 100mmHg(13.3㎪). And Equivalent and circumferential stresses in the anastomosis were also analyzed with respect to the change of initial diameter ratio( $R_1$) and fatty tissue thickness( $T_{F}$). The results obtained were as follows : 1 When the elastic foundation, assumed to be incompressive material, surrounded the grafts in anastomosis, the compliance mismatch of artery and PTFE was reduced by 47 -72%. 2. As the initial diameter ratio( $R_1$) became larger, the higher difference of compliance was induced in spite of elastic foundation surrounding grafts. 3. The maximum nondimensional circumferential stress is twice or three times as high as the maximum nondimensional equivalent stress in the anastomotic part.t.