• 제목/요약/키워드: elastic strength

검색결과 1,847건 처리시간 0.128초

순환골재콘크리트의 탄성계수 추정에 관한 연구 (The prediction of Elastic Modulus of Recycled Aggregate Concrete)

  • 심종성;박철우;박성재;김용재;김현중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.105-108
    • /
    • 2005
  • This study investigated fundamental properties of the recycled aggregate which was produced through recent hi-techniques of recycling. In addition, the mechanical properties of the concrete that used the recycled aggregate were compared to the concrete used the natural aggregate. From the results of the mechanical property tests, as the recycled aggregate replacement ratio increased, the compressive strength and elastic modulus decreased. When the recycled aggregate completely replaced the natural aggregate, the compressive strength and elastic modulus was about 15$\%$ and 35$\%$ lower than the natural aggregate concrete, respectively. Based on the test results, equations for prediction of compressive strength and elastic modulus were suggested in the consideration of the amount of the replaced recycled aggregate. Based on the test results and study, the equation predicting the required development length of the recycled aggregate concrete is proposed.

  • PDF

고강도강 자동차 부품의 롤 성형 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of the Roll Forming Process for an Automotive Part of High Strength Steel)

  • 김광희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.480-483
    • /
    • 2005
  • A roll forming process is developed for an automotive part of high strength steel. Forming rolls are designed through the plane strain elastic-plastic finite element analysis to estimate the springback. It is assumed that the process can be approximated as a series of multi-step bending processes. Then the 3D elastic-plastic finite element analysis with the solid element is carried out for the designed roll forming process. The prototype roll forming machine and the forming rolls are made and the experiments are carried out. The results of the analysis and the experiments are compared.

  • PDF

국내의 실험자료를 이용한 고강도 및 초고강도 콘크리트의 탄성계수식 제안 (A Proposal of Elastic Modulus Equation for High-Strength and Ultra-High-Strength Concrete)

  • 장일영;박훈규;윤영수
    • 콘크리트학회지
    • /
    • 제8권6호
    • /
    • pp.213-222
    • /
    • 1996
  • 최근 들어 고강도 및 초공강도 콘크리트의 사용이 국내외적으로 비약적인 증가 추세에 있으며, 국내에서도 이와 관련된 많은 연구가 진행되고 있다. 특히 재료개발 및 현장적용 측면에서의 연구가 활발하여 많은 성과를 얻어내고 있다. 그러나 설계단계부터 고강도의 콘크리트를 적용하는 참의미의 실용화 정도는 매우 미진한 실정이다. 이것은 설계단계부터 믿고 적용할 수 있는 고강도 콘크리트 관련의 국내 설계규준이 확립되어 있지 않은 것이 가장 큰 원인이 되고 있다. 따라서 본 연구에서는 고강도 및 초고강도 콘크리트 설계규준 정립에 있어서 기초적 자료가 될 수 있는 탄성계수의 추정식을 제안하였다. 이것은 국내에서 실험도니 고강도 및 초고강도 콘크리트의 탄성계수 값들을 근거로 통계적 수법을 이용한 것으로 압축강도 400-1,000kg/$\textrm{cm}^2$에 대해 적용할 수 있다. 또한 국외에서 발표된 탄성계수식을 국내의 실험값과 비교, 분석한 결과 전반적으로 과대평가하고 있음이 확인되어 본 연구에서 제안된 탄성계수 추정식이 국내실정에 적합할 것으로 사료된다.

순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향 (Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete)

  • 양인환;정준영
    • 콘크리트학회논문집
    • /
    • 제28권1호
    • /
    • pp.105-113
    • /
    • 2016
  • 순환골재를 사용한 콘크리트의 재료 및 역학 특성에 관한 대부분의 연구는 압축강도 40 MPa 이하의 콘크리트에 대하여 수행되었으며, 40 MPa 이상의 순환골재 콘크리트에 대한 역학적 특성에 대한 연구결과는 미비하다. 따라서, 이 연구에서는 순환골재 사용의 확대를 위해 40 MPa 이상의 순환골재 콘크리트의 압축강도 및 역학 특성을 파악하였다. 순환골재 콘크리트의 역학 특성을 파악하기 위하여 콘크리트 압축강도 및 순환굵은골재 치환율을 실험변수로 고려하였다. 실험변수로서 콘크리트의 압축강도는 45 및 60 MPa이고, 순환골재 치환율은 30, 50, 70 및 100%이다. 실험변수에 따른 순환골재 콘크리트의 압축강도, 탄성계수, 인장강도 및 파괴계수 특성을 분석하였다. 실험결과는 고강도 콘크리트일수록 순환골재 치환율에 따른 압축강도 감소량이 작은 것을 나타낸다. 탄성계수 실험결과와 기존설계코드에 의한 탄성계수 예측결과를 비교하였으며, 설계코드에 의한 예측결과는 실험결과를 과다평가하고 있다. 반면에 설계코드에 의한 파괴계수 예측결과와 실험결과는 잘 일치한다.

탄력밴드를 이용한 협응이동훈련이 무릎넙다리통증 증후군을 가진 여자 대학생의 통증과 근력, 동적 균형, 근활성도에 미치는 영향 (The effect of Coordinative Locomotor Training using Elastic Band on Pain, Muscle Strength, Dynamic Balance and Muscle Activity of Female College Students with Patellofemoral Pain Syndrome)

  • 이한결
    • 대한물리치료과학회지
    • /
    • 제30권3호
    • /
    • pp.59-71
    • /
    • 2023
  • Background: This study was to investigate the effects of coordinative locomotor training(CLT) using elastic bands on pain, dynamic balance, muscle strength, and muscle activity of female college students with patellofemoral pain syndrome(PFPS). Design: Randomized Controlled Trial Methods: Twenty-six female college students with PFPS were assigned randomly to an experimental(n=13) or control(n=13) group. The experimental group performed CLT using an elastic band. The control group performed squat exercises to strengthen muscle strength. The 30-minute inter- vention was applied a total of twelve times, three times a week for four weeks. All subjects measured the pain, the muscle strength, the dynamic balance, and the muscle activity(VL/VM ratio) before and after intervention. A paired t-test was used for the determination of differences before and after treatment, and an independent t-test was used for the determination of differences between treatment groups. Results: As a result of comparison within groups, the experimental group showed significant differences in pain, muscle strength, dynamic balance, and VL/VM ratio after the experiment(p<0.05), and the control group showed significant differences in pain, muscle strength, and dynamic balance after the experiment(p<0.05). In comparison between the two groups, the experimental group showed more significant differences in pain, dynamic balance, and VL/VM ratio than the control group(p<0.05), and the control group showed more significant differences in muscle strength than the experimental group(p<0.05). Conclusion: Based on these results, CLT using elastic bands effectively improved the pain, muscle strength, dynamic balance, and VL/VM ratio of female college students with PFPS.

고강도 콘크리트를 적용시킨 CFTA 거더의 선형 탄성 거동분석 (Linear-Elastic Behavior Analysis of CFTA Girder Filled with High-Strength Concrete)

  • 최성우;이학;정민철;공정식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.511-516
    • /
    • 2008
  • Recently, many researchers are studying a high-strength concrete, composite materials and composite structures to build structures more economic and stable all over the world. For instance, there is CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure to maximize the efficiency of structure and economic. In this study, linear-elastic behavior analysis of CFTA gider filled with high-strength concrete was performed by using ABAQUS 6.5-1 and also the result was analyzed.

  • PDF

반도체 패키징용 Gold Bonding Wire의 변형특성 및 해석 (Deformation Properties of Gold Bonding Wire for VLSI Packaging Applications)

  • 김경섭;홍순형
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2001
  • Mechanical properties of gold bonding wire for VLSI packaging have been studied. The diameters of gold wires are about 20-30 micrometer and fracture loads are 8-20 gram force. The elastic modulus, yield strength, fracture strength and elongation properties have been evaluated by micro-tensile test method. This work discusses for an appropriate selection of micro-force testing system and grip design in mim testing. The best method to determine gauge length of wire and to measure tensile properties has been proposed. The mechanical properties such as strength and elastic modulus of current gold bonding wire are higher than pure those of gold wire.

  • PDF

Mechanical properties of coconut fiber-reinforced coral concrete

  • Cunpeng Liu;Fatimah De'nan;Qian Mo;Yi Xiao;Yanwen Wang
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.107-116
    • /
    • 2024
  • This study examined the changes in the mechanical properties of coral concrete under different coconut fiber admixtures. To accomplish this goal, the compressive strength, splitting tensile strength, flexural strength and elastic modulus properties of coral concrete blocks reinforced with coconut fibers were measured. The results showed that the addition of coconut fiber had little effect on the cube and axial compressive strengths. With increasing coconut fiber content, the flexural strength and splitting tensile strength of the concrete changed substantially, first by increasing and then by decreasing, with maximum increases of 36.0% and 12.8%, respectively; additionally, the addition of coconut fibers resulted in a failure type with some ductility. When the coconut fiber-reinforced coral concrete was 7 days old, it reached approximately 74% of its maximum strength. The addition of coconut fiber did not affect the early strength of the coral concrete mixed with seawater. When the amount of coconut fiber was no more than 3 kg/m3, the resulting concrete elastic modulus decreased only slightly from that of a similar concrete without coconut fiber, and the maximum decrease was 5.4%. The optimal dose of coconut fiber was 3 kg/m3 in this study.

Use of waste glass as coarse aggregate in concrete: mechanical properties

  • Yan, Lan-lan;Liang, Jiong-Feng
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2019
  • The possibility of using recycled coarse glass aggregates as a substitute for natural crushed stone are relatively limited. In order to promote it for engineering application, this paper reports the effect of coarse glass aggregate on mechanical behavior of concrete. The coarse aggregates are substituted for coarse glass aggregate (CGA) as 0%,20%,40%,60%,80% and 100%.The results show that increasing the coarse glass aggregate content cause decrease in compressive strength, the elastic modulus, the splitting tensile strength, the flexural strength. An equation is presented to generate the relationship between cube compressive strength and prism compressive strength, the relationship between cube compressive strength and elastic modulus, the relationship between cube compressive strength and splitting tensile strength, the relationship between cube compressive strength and flexural strength of coarse glass concrete.

Crosslinkable Warm-melt-Polyurethanes Offer Instant-fix Characteristics

  • Merz, Peter W.
    • 접착 및 계면
    • /
    • 제3권1호
    • /
    • pp.37-42
    • /
    • 2002
  • Adhesives are becoming increasingly accepted for advanced engineering/boding tasks. Therefore the understanding of the basic principles and the benefits of elastic bonding and structural bonding respectively is of utmost importance. Structural bonding means adhesive performance in load-bearing environments. Furthermore. the time to achieve handling strength has an impact on the economics of an assembly line. The paper gives briefly a summary about the fundamentals of elastic bonding and discusses different adhesive systems in the context of handling strength. Hereby the focus lies on the Warm Melt Technology, and its potential is compared to standard adhesives (l-part, 2-part and Booster Technology, a special 2-C system). Examples illustrate their economical benefits. Main Points : ${\bullet}$ The basic principles and benefits of elastic bonding ${\bullet}$ Warm-melt Technology in comparison with standard adhesives ${\bullet}$ Handling strength an economic issue ${\bullet}$ Combination with Booster-Technology, a special 2-C PUR system ${\bullet}$ Presentation of real world applications Learning Objectives: ${\bullet}$ Fundamentals of elastic bonding ${\bullet}$ Warm-melt Technology: correlation between chain length and cristallinity ${\bullet}$ Handling strength and curing speed of various systems in comparison ${\bullet}$ Real world applications illustrate the potential of the Warm-melt Technology.

  • PDF