• Title/Summary/Keyword: elastic stiffness formula

Search Result 44, Processing Time 0.024 seconds

Distortional buckling of cold-formed lipped channel columns subjected to axial compression

  • Zhou, Wangbao;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.331-338
    • /
    • 2017
  • Cold-formed lipped channel columns (CFLCCs) have been widely used in light gauge steel constructions. The distortional buckling is one of the important buckling modes for CFLCCs and the distortional buckling critical load depends significantly on the rotational restrain stiffness generated by the web to the lipped flange. First, a simplified explicit expression for the rotational restraint stiffness of the lipped flange has been derived. Using the expression, the characteristics of the rotational restraint stiffness of the lipped flange have been investigated. The results show that there is a linear coupling relationship between the applied forces and the rotational restraint stiffness of the lipped flange. Based on the explicit expression of the rotational restraint stiffness of the lipped flange, a simplified analytical formula has been derived which can determine the elastic distortional buckling critical stress of the CFLCCs subjected to axial compression. The simplified analytical formula developed in this study has been shown to be accurate through the comparisons with results from the distortional buckling analyses using the ANSYS finite element software. The developed analytical formula is easy to apply, and can be used directly in practical design and incorporated into future design codes and guidelines.

The Stiffness Analysis of Circular Plate Regarding the Area Change of Both Ends Constructing Supporting Conditions (원형평판의 지지조건을 구성하는 양 끝단의 면적변화에 따른 강성도 해석)

  • 한근조;안찬우;김태형;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.908-911
    • /
    • 2002
  • This paper investigates the characteristics of deflection for circular plate that has same supporting condition along the width direction of plate according to the area change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting part to radius of circular plate.

  • PDF

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.681-697
    • /
    • 2019
  • This paper numerically assesses the initial stiffness and moment capacity of stainless steel composite bolted joints with concrete-filled circular tubular (CFCT) columns. By comparing with existing design codes including EN 1993-1-8 and AS/NZS 2327, a modified component method was proposed to better predict the flexural performance of joints involving circular columns and curved endplates. The modification was verified with independent experimental results. A wide range of finite element models were then developed to investigate the elastic deformations of column face in bending which contribute to the corresponding stiffness coefficient. A new design formula defining the stiffness coefficient of circular column face in bending was proposed through regression analysis. Results suggest that a factor for the stiffness coefficient of endplate in bending should be reduced to 0.68, and more contribution of prying forces needs to be considered. The modified component method and proposed formula are able to estimate the structural behaviour with reasonable accuracy. They are expected to be incorporated into the current design provisions as supplementary for beam-to-CFCT column joints.

Elastic Analysis of Honeycomb Materials Considering Cell Size and Cell Wall Thickness (셀 크기와 셀벽 두께를 고려한 하니컴 재료의 탄성 해석)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • Honeycomb sandwich composite structures have been widely used in aircraft and military industry because of light weight and high stiffness. Accurate mechanical properties of honeycomb materials are needed for analysis of sandwich composites. In this study, theoretical formula for elastic modulus of honeycomb materials was established considering bending and axial deformations of their walls. Finite-element analysis results were compared with theoretical ones of the longitudinal and transverse moduli of honeycomb materials. Consequently, the mechanical properties of honeycomb materials could be analytically predicted.

  • PDF

Elastic Buckling Characteristics of Corrugated Pipe Made of Orthotropic Composite Material (직교 이방성 복합재료로 구성된 파형 관로의 탄성좌굴 특성)

  • Han, Taek Hee;Kim, Tae Yeon;Han, Keum Ho;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.77-84
    • /
    • 2007
  • The elastic buckling strength of a corrugated pipe made of orthotropic material was evaluated. The height and length of a corrugated wave and the thickness of the pipe were considered as factors affecting the buckling strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness were considered as parameters affecting on the buckling strength of a pipe made of orthotropic material. Buckling strengths of various corrugated pipes with different shapes and stiffness ratio were evaluated by FE analyses. And a formula to estimate the elastic buckling strength was suggested by regression of FE analysis results. Analysis results show that a corrugated pipe has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the corrugated pipe made of orthotropic material.

A Experimental Study on the Stiffness Characteristics of Elastomeric Bearings (탄성받침의 강성특성에 대한 실험연구)

  • Yoon, Hyejin;Cho, Changbeck;Kim, Youngjin;Kwahk, Imjong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.475-485
    • /
    • 2008
  • This paper intends to enhance the reliability and performance of domestic elastomeric bearings through the proposal of directions for the improvement of their stiffness regard to the Korean industrial standard KS F 4420 relative to the evaluation of design/fabrication/quality. Therefore, comparative analysis of the compressive elastic modulus, stiffness measurement method and performance evaluation method of KS F 4420 with those of Eurocode, Japanese bearing manual, and ISO code was performed, and measurement tests on the compressive stiffness and shear stiffness of common elastomeric bearings produced in Korea were conducted. The experimental results reveal that differences of about 20% and 13% occurred respectively for the compressive stiffness and shear stiffness according to the definition adopted for the stiffness. The measured values for the stiffness of the domestic elastomeric bearings were also verified to exhibit large deviation from the formula proposed by KS F 4420. Elastomeric bearings that does not have appropriate compressive stiffness required at the design can result in uneven deflection at supports of bridges and excessive stress in girders. Accordingly, the establishment of compressive elastic modulus formula and performance evaluation criteria fitted to the domestic circumstances through the execution of performance evaluation of bearings presenting diversified shapes and shape factors appears to be necessary for the domestic bearings to meet the performance required in design.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

Correction Factors for Modulus Calculation Equation used in Light Weight Deflectometer Considering Track Foundation (궤도노반 강성차이를 고려한 동평판재하시험(LWDT) 동탄성계수 산정공식 수정계수)

  • Choi, Chan Yong;Lee, Jin Wook;Lim, Yuijn;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • LWDT was developed for use as an alternative technique to measure the stiffness of trackbed soils. In this study, numerical and theoretical analyses of LWDT's acting mechanism were performed. The effectiveness of the adapted elastic formula used for calculation of the dynamic modulus, Evd, was investigated theoretically and also numerically by running ABAQUS analysis. The minimum thickness of the upper layer is proposed based on the analysis. Correction factors for the formula of elastic modulus are also proposed in this study. In the future, following field test results and laboratory mechanical tests such as the resonant column test, a guideline for the use of LWDT as a standard test protocol in track construction sites, as a measuring tool for the degree of compaction and/or stiffness and dynamic modulus, will be proposed based on this analysis.