• 제목/요약/키워드: elastic shear stress

검색결과 428건 처리시간 0.025초

지중 RC 도시지하철고 구조물의 내진설계 (A Seismic Design of RC Underground Subway Structure)

  • 정제평;임동원;이성로;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

Out of plane vibrations of thin-walled curved beams considering shear flexibility

  • Cortinez, V.H.;Piovan, M.T.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.257-272
    • /
    • 1999
  • In this paper a simple finite element is proposed for analyzing out of plane vibration of thin walled curved beams, with both open and closed sections, considering shear flexibility. The present element is obtained from a variational formulation governing the dynamics of a three-dimensional elastic body in which the stress tensor as well as the displacements are variationally independent. The element has two nodes with four degrees of freedom in each. Numerical examples for the first six frequencies are performed in order to assess the accuracy of the finite element formulation and to show the influence of the shear flexibility on the dynamics of the member.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • 접착 및 계면
    • /
    • 제5권2호
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

고탄성 응력흡수층의 반사균열 저항특성 연구 (Behavior of High-elastic Stress Absorbing Interlayer for Reflective Cracking Resistance)

  • 박태순;이요섭
    • 대한토목학회논문집
    • /
    • 제26권3D호
    • /
    • pp.445-451
    • /
    • 2006
  • 본 연구는 노후 콘크리트 포장의 아스팔트 덧씌우기에서 발생하는 반사균열을 억제하기 위한 방안으로 노후 콘크리트와 아스팔트 표층 사이에 응력을 흡수할 수 있는 중간층 혼합물을 개발하기 위하여 수행되었다. 고탄성 응력흡수층은 휨 변형과 수평변형으로 인하여 발생하는 균열응력을 흡수 또는 분산 시킬 수 있는 탄성과 유연성, 균일성 및 불투수성이 요구된다. 본 연구로부터 국외제품을 모델로 국산 바인더를 개발 하였으며 이를 사용하여 제작된 혼합물 시편은 시방규격에 만족하였다. 기존 덧씌우기 공법과 비교한 시험으로부터 고탄성 응력흡수 중간층이 설치된 경우 설치되지 않은 경우에 비하여 전단파괴수명과 수평변위저항도는 약 4배가 증가되었으며 표층재료의 선정에 따라 전단파괴수명은 5배, 수평변위저항도는 9배가 증가되어 고탄성 응력흡수 중간층이 반사균열 억제에 우수한 것으로 본 연구에 나타났다.

전단하중하의 반도체 칩 접착계면의 특이응력 해석 (Analysis of Singular Stresses at the Bonding Interface of Semiconductor Chip Subjected to Shear Loading)

  • 이상순
    • 마이크로전자및패키징학회지
    • /
    • 제7권4호
    • /
    • pp.31-35
    • /
    • 2000
  • 반도체 칩과 리드프레임을 접착하고 있는 얇은 접착제층에 전단하중이 가해질 때 발생하는 응력상태를 조사하고 있다. 계면 응력상태를 해석하기 위해서 경계요소법이 사용되고 있다. 선형 탄성이론을 적용하여 해석하면, 강체와 접착제의 계면이 자유 경 계면과 만나는 부분에서 $\gamma^{\lambda=1}$(0<1<1) 형태의 응력 특이성이 존재한다. 이러한 특이성으로 인해, 모서리 균열이나 계면 박리가 발생할 수 있다.

  • PDF

인공심장 sac내의 3차원 유체-구조물 상호작용에 대한 수치적 연구 (Numerical analysis of the 3D fluid-structure interaction in the sac of artificial heart)

  • 박명수;심은보;고형종;박찬영;민병구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.27-32
    • /
    • 2000
  • In this study, the three-dimensional blood flow within the sac of KTAH(Korean artificial heart) is simulated using fluid-structure interaction model. The numerical method employed in this study is the finite element commercial package ADINA. The thrombus formation is one of the most critical problems in KTAH. High fluid shear stress or stagnated flow are believed to be the main causes of these disastrous phenomenon. We solved the fluid-structure interaction between the 3D blood flow in the sac and the surrounding sac material. The sac material is assumed as linear elastic material and the blood as incompressible viscous fluid. Numerical solutions show that high shear stress region and stagnated flow are found near the upper part of the sac and near the comer of the outlet during diastole stage.

  • PDF

Mode III SIFs for interface cracks in an FGM coating-substrate system

  • Monfared, Mojtaba Mahmoudi
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.71-79
    • /
    • 2017
  • In this study, interaction of several interface cracks located between a functionally graded material (FGM) layer and an elastic layer under anti-plane deformation based on the distributed dislocation technique (DDT) is analyzed. The variation of the shear modulus of the functionally graded coating is modeled by an exponential and linear function along the thickness of the layer. The complex Fourier transform is applied to governing equation to derive a system of singular integral equations with Cauchy type kernel. These equations are solved by a numerical method to obtain the stress intensity factors (SIFs) at the crack tips. The effects of non-homogeneity parameters for exponentially and linearly form of shear modulus, the thickness of the layers and the length of crack on the SIFs for several interface cracks are investigated. The results reveal that the magnitude of SIFs decrease with increasing of FG parameter and thickness of FGM layer. The values of SIFs for FGM layer with exponential form is less than the linear form.

Dispersion of shear wave in a pre-stressed hetrogeneous orthotropic layer over a pre-stressed anisotropic porous half-space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.951-972
    • /
    • 2016
  • The purpose of this study is to illustrate the propagation of the shear waves (SH-waves) in a prestressed hetrogeneous orthotropic media overlying a pre-stressed anisotropic porous half-space with self weight. It is considered that the compressive initial stress, mass density and moduli of rigidity of the upper layer are space dependent. The proposed model is solved to obtain the different dispersion relations for the SH-wave in the elastic-porous medium of different properties. The effects of compressive and tensile stresses along with the heterogeneity, porosity, Biot's gravity parameter on the dispersion of SH-wave are shown numerically. The wave analysis further indicates that the technical parameters of upper and lower half-space affect the wave velocity significantly. The results may be useful to understand the nature of seismic wave propagation in geophysical applications and in the field of earthquake and material science engineering.

3-D 칩 만곡의 굽힘응력에 관한 연구 (A Study of Bending Stress for the 3-D Chip Curl)

  • 윤주식;김우순;김경우;김동현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.730-734
    • /
    • 2000
  • Once the Chip has developed a mixed mode of side-curl and up-curl, it would generally curl to strike the too] flank. The development of the bending stresses and shear in the chip would ultimately lead to chip failure. This paper attacks this problem from a mechanics-based approach. by treating the chip as a 3-D elastic curved beam, and applying appropriate constraints and forces. The expressions for bending. shear and direct stresses are developed through an energy-based criterion. The location of the maximum stresses is also identified and explained for simulated test conditions.

  • PDF

하이브리드 FRP 리바의 역학적 특성 (Mechanical Properties of Hybrid FRP Rebar)

  • 박찬기;원종필
    • 한국농공학회지
    • /
    • 제45권2호
    • /
    • pp.58-67
    • /
    • 2003
  • Over the last decade fiber-reinforced polymer (FRP) reinforcement consisting of glass, carbon, or aramid fibers embedded in a resin such as vinyl ester, epoxy, or polyester has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. But reinforcing rebar for concrete made of FRP rebar has linear elastic behavior up to tensile failure. For safety a certain plastic strain and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. The same should be required for FRP rebar. Thus, the main object of this study was to develop new type of hybrid FRP rebar Also, this study was evaluated to the mechanical properties of Hybrid FRP rebar. The Manufacture of the hybrid FRP rebar was achieved by pultrusion, and braiding and filament winding techniques. Tensile and interlaminar shear test results of Hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.