• Title/Summary/Keyword: elastic properties

Search Result 2,367, Processing Time 0.03 seconds

Fabrication of Fiber/Particle Hybrid MMCs and Analysis of the Mechanical Properties (섬유/입자 혼합 금속복합재료의 제조 및 특성평가)

  • 정성욱;남현욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.34-37
    • /
    • 2001
  • This study developed Fiber/Particle Hybrid MMCs and analyzed their mechanical properties. Using $\textrm{Al}_2\textrm{O}_3f$ and $\textrm{Al}_2\textrm{O}_3p$ with the fiber to particle ratio of 1:1, 1:3, 1:5 hybrid preform and MMCs are fabricated. For the analysis of the mechanical properties, three point bending tests were preformed for the preform and tensile test for the MMCs. The experimental results show that the hybrid MMCs can be successfully fabricated using the equipment of fiber preform fabrication system and squeeze casting method. And as the amount of particle in hybrid MMCs increases, the tensile strength, elastic modulus and the volume fraction of reinforcement increases.

  • PDF

Effect of Xylitol on Bread Properties (자일리톨 첨가가 식빵의 특성에 미치는 영향)

  • Lee, Soo-Jeong;Paik, Jae-Eun;Han, Myung-Ryun
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • This study investigated the quality characteristics of breads manufactured with xylito1. Four different concentrations(0, 5, 7, and 10%) of xylitol were added to the bread-making flour. Volume, color, the visco-elastic properties of the dough, and bread texture were analyzed. The dough volumes of the xylitol treatments during fermentation, as well as the final volumes of the xylitol breads were lower than those of the control dough and bread. Onset temperature slightly increased with the xylitol concentration, but entalphy changed minimally. Finally, the hardness of the bread positively increased with the xylitol concentration.

Measurement of Tensile Properties of Copper Foil using Micro-ESPI Technique (마이크로 ESPI기법을 이용한 동 박막의 인장 특성 측정)

  • 김동일;허용학;기창두
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.89-96
    • /
    • 2004
  • Micro-tensile testing system, consisting of a micro tensile loading system and micro-ESPI(Electronic Speckle Pattern Interferometry) system, has been developed for measurement of micro-tensile properties of thin micro-materials. Micro-tensile loading system had a load cell with the maximum capacity of 50N and micro actuator with resolution of 4.5nm in stroke. The system was used to apply a tensile load to the micro-sized specimen. During tensile loading, the micro-ESPI system acquired interferornetric speckle patterns in the deformed specimen and measured the in-plane tensile strain. The ESPI system consisted of a CCD-camera with a lens and the window-based program developed for this experiment. Using this system, stress-strain curves for 4 kinds of electrolytic copper foil 18$\square$m thick were obtained. From these curves, tensile properties, including the elastic modulus. yielding strength and tensile strength, were determined and also values of the plastic exponent and coefficient based on Ramberg-Osgood relationship were evaluated.

Fabrication of Nanoscale Metal Nanobeam Specimens and Evaluation of the Mechanical Properties of Gold Thin Film Nanostructures (나노스케일의 금속 나노빔 시험편 제작 및 이를 이용한 금 박막 나노 구조물의 기계적 물성 평가)

  • Baek, Chang-Wook;Hyeon, Ik-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1294-1297
    • /
    • 2007
  • In this paper, fabrication techniques for nanoscale metallic nanobeam specimens have been proposed, and mechanical properties of the fabricated gold nanobeams have been evaluated by nanoindentation techniques and nanobeam bending test. Elastic modulus and hardness of gold nanobeams were measured to be $109.6\;{\pm}\;10\;GPa\;and\;1.73\;{\pm}\;0.3\;GPa$, respectively, from the nanoindentation test, while elastic modulus was $241\;{\pm}\;7\;GPa$ from the nanobeam bending test.

Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

  • Hosseini, Seyed Mahmoud;Shahabian, Farzad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.41-64
    • /
    • 2014
  • The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).

Structural dynamics: Convergence properties in the presence of damage and applications to masonry structures

  • Nappi, Alfonso;Facchin, Giovanni;Marcuzzi, Claudio
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.587-598
    • /
    • 1997
  • A numerical model for masonry is proposed by following an internal variable approach originally developed in the field of elastic-plastic analysis. The general features of the theoretical framework are discussed by focussing on finite element models applicable to incremental elastic-plastic problems. An extremum property is derived and its implications in terms of convergence for convenient algorithms are briefly discussed, by including the case of softening materials and damage effects. Next, a numerical model is presented, which is suitable for masonry, can be developed according to the same internal variable formulation and enjoys similar properties. Some numerical results are presented and compared with the response of a masonry shear wall subjected to pseudodynamic tests.

Measurement of Mechanical Properties of Electroplated Nickel Thin Film for MEMS Application (미소 기전 시스템용 니켈 박막의 기계적 물성 측정)

  • Baek, Dong-Cheon;Park, Tae-Sang;Lee, Soon-Bok;Lee, Nag-Kyu;Choi, Tae-Hoon;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1321-1325
    • /
    • 2003
  • Nickel thin film is one of the most important materials used in micromachined structure. To measure the mechanical properties of electroplated nickel thin film, two techniques are adopted and compared quantitatively with. One is nano-indentation test to measure the elastic modulus. The other is tensile test to measure not only elastic modulus but also yield strength and plastic deformation, ultimate strength. To perform the tensile test, the test apparatus was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

Evaluation of Mechanical Properties of Structural Ceramics ($Al_{2}O_{3}$) Using the High Frequency Ultrasonic C - Scan (초음파 C-Scan을 이용한 구조용 세라믹스의 기계적 특성평가)

  • Chang, Y.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.2
    • /
    • pp.18-24
    • /
    • 1989
  • Computer-aided high frequency ultrasonic is applied to aluminum oxide(85w%, 94w%, 96w%, and 99w%) MOR(modulus of rupture) samples to evaluate mechanical properties such as density variation, pore content, elastic modulus, shear modulus, and poisson's ratio. Ultrasonic wave velocity and attenuation measurement techniques were used as an evaluator of such properties. Pulse-echo C-Scan images with different fate setting method using 50MHz center frequency 1 inch focal length transducer allows evaluation of density variation and pore content. Elastic modulus calculated with the relation of density and ultrasonic velocity. It shows good reliability as compared with resonance method. Sintered density variation of $0.025g/cm^{3}$, that is 0.6% of theoretical density in $Al_{2}O_{3}$ samples can be observed by ultrasonic velocity measurement. Attenuation measurement method qualitatively agree with 4-point fracture testing result concerning of porosity content.

  • PDF

Finite Element Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 유한요소 거동해석)

  • 강병수;주영태;신동훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.463-468
    • /
    • 2003
  • A finite element formulation to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The total potential energy of the flexural composite member is minimized to derive the time dependent finite element equilibrium equation. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The numerical analysis with considering the variation of concrete elastic modulus are performed to investigate the effect of it on the early-age behavior of composite structures. The one dimensional finite element analysis results are compared with the analytical method based on the sectional analysis. Close agreement is observed among the two methods.

  • PDF

MEASUREMENT OF VISCOELASTIC PROPERTIES OF FABRIC FOR TACTILE FEELING (I) - STRESS RELAXATION (직물의 점탄성 특성 측정과 질감해석 연구(I) - 응력완화)

  • 황성욱;권영하;강재식;박연규;강대임
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.147-152
    • /
    • 1999
  • We have measured viscoelastic properties of fabrics in thickness direction. We assume that Maxwell model is very useful in stress relaxation of viscoelastic theories and appropriate formulas for fabric are calculated. Measurement system constitute of high precession load cell, translator and laser displacement sensor for viscoelastic properties was designed and elastic coefficients and damping coefficients were measured for 10 fabric samples. Elastic coefficients measured were 19~25 kN/㎡ and Damping coefficients measured were 4.8~8.7 MN$.$s/㎡. We concluded that these coefficients are good related with FUKURAMI collected from KESF system

  • PDF