• 제목/요약/키워드: elastic properties

검색결과 2,393건 처리시간 0.04초

Axisymmetric bending of a circular plate with stiff edge on a soft FGM layer

  • Volkov, Sergey S.;Litvinenko, Alexander N.;Aizikovich, Sergey M.;Wang, Yun-Che;Vasiliev, Andrey S.
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.227-241
    • /
    • 2016
  • A circular plate with constant thickness, finite radius and stiff edge lying on an elastic halfspace is considered. The half-space consists of a soft functionally graded (FGM) layer with arbitrary varying elastic properties and a homogeneous elastic substrate. The plate bends under the action of arbitrary axisymmetric distributed load and response from the elastic half-space. A semi-analytical solution for the problem effective in whole range of geometric (relative layer thickness) and mechanical (elastic properties of coating and substrate, stiffness of the plate) properties is constructed using the bilateral asymptotic method (Aizikovich et al. 2009). Approximated analytical expressions for the contact stresses and deflections of the plate are provided. Numerical results showing the qualitative dependence of the solution from the initial parameters of the problem are obtained with high precision.

Analysis of Structure and Prediction of Mechanical Properties for 3D Composites (3D 복합재료의 구조해석 및 기계적 물성 예측)

  • 유근수;전흥재;변준형;이상관
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.292-295
    • /
    • 2002
  • In this paper, an analytical model for the prediction of the elastic properties of multi-axial warp knit fabric (MWK) composites is proposed. The geometric limitation, effect of stitching fibers and design parameters of MWK composites are considered in the model. The elastic behavior of MWK composites was conducted by using an averaging method. The predicted elastic properties are in reasonably good agreement with experimental values. Finally the effect of stitching in the MWK composites are discussed.

  • PDF

Nonlinear deflection responses of layered composite structure using uncertain fuzzified elastic properties

  • Patle, B.K.;Hirwani, Chetan K.;Panda, Subrata Kumar;Katariya, Pankaj V.;Dewangan, Hukum Chand;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • 제35권6호
    • /
    • pp.753-763
    • /
    • 2020
  • In this article, the influence of fuzzified uncertain composite elastic properties on non-linear deformation behaviour of the composite structure is investigated under external mechanical loadings (uniform and sinusoidal distributed loading) including the different end boundaries. In this regard, the composite model has been derived considering the fuzzified elastic properties (through a triangular fuzzy function, α cut) and the large geometrical distortion (Green-Lagrange strain) in the framework of the higher-order mid-plane kinematics. The results are obtained using the fuzzified nonlinear finite element model via in-house developed computer code (MATLAB). Initially, the model accuracy has been established and explored later to show the dominating elastic parameter affect the deflection due to the inclusion of fuzzified properties by solving a set of new numerical examples.

A Study on Thermal and Mechanical Properties of Elastic Epoxy with Water Aging (탄성형 에폭시의 흡습 열화에 따른 열적 및 기계적 특성에 관한 연구)

  • 이관우;민지영;한기만;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제53권6호
    • /
    • pp.293-299
    • /
    • 2004
  • In this paper, thermal and mechanical properties of electric epoxy with water aging were discussed. We made elastic epoxy specimen adding a ratio of 0〔phr〕20〔phr〕, 35〔phr〕 and 53〔phr〕 with modifier to existing epoxy. We studied mechanical property of elastic resin after absorption in water from 0 to 484 hours. As a result, diffusion factor of elastic epoxy showed 20-21${\times}$10$^{-4}$ $\textrm{mm}^2$/s and general epoxy showed 9.5${\times}$10$^{-4}$ $\textrm{mm}^2$/s. Elastic property increased linearly according to addiction and decreased according to water absorption. Tensile strength was reduced according to addition. It was affected by water absorption of micro-void of elastic epoxy. Hardness inclined to decrease after increasing according to absorbed time. In water-absorption state, it was experimented a change of heat flow by temperature of elastic epoxy and change of thermal expansion coefficient. DSC (Differential Scanning Calorimetry) and TMA (Thermomechanical Analysis) equipments were used to measure Tg. A temperature ringe of DSC was from -0($^{\circ}C$) to 200($^{\circ}C$). One of TMA was from -0($^{\circ}C$) to 350($^{\circ}C$). In addition, we investigated structural analysis of water absorbed specimen using SEM (Scanning Electron Microscope).

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I))

  • Kang Ji-Woong;Kim Sang-Tae;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • 제19권4호
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Study on the Strength Characteristics of PP and ABS According to the Ratio of Recycled Resin (재사용 수지 비율에 따른 PP, ABS의 강도 특성에 관한 연구)

  • Jun-Han Lee;Jong-Sun Kim
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.57-63
    • /
    • 2024
  • In this study, the recyclability of commonly used PP (polypropylene) and ABS (acrylonitrile butadiene styrene) was evaluated by molding test specimens from mixture of virgin and shredded material, followed by measuring their strength properties, Experiments were conducted o two type of PP (transparent and non-transparent) and two types of ABS (white and yellow). Test specimens for each resin were prepared with shredded material ratios ranging from 10% to 50% in 10% increments. Changes in tensile strength, elastic modulus, and elastic limit were analyzed based on the mixing ratio of the shredded material. The experimental results demonstrated that the strength properties of all the resins remained consistent within a certain range, even with increasing proportions of shredded material. For transparent PP, the tensile strength ranged from 30.87± MPa, the elastic modulus from 1.23±0.04 GPa, and the elastic limit from 19.17±0.44%. Non-transparent PP exhibited a tensile strength ranging from 27.71±0.58 MPa, an elastic modulus from 1.03±0.06 GPa, and an elastic limit from 17.35±0.41%. For ABS, white ABS had a tensile strength of 39.42±0.28 MPa, an elastic modulus of 1.94±0.01 GPa, and an elastic limit of 36.76±0.25%. Yellow ABS showed a tensile strength of 39.25±0.78 MPa, an elastic modulus of 1.94±0.01 GPa, and an elastic limit of 37.14±0.23%, with values remaining consistent within this range. Based on these results, it was confirmed that the mechanical properties of the resins used in this study do not change significantly when mixed with recycled shredded material, indicating excellent mechanical recyclability.

Micromechanics Modeling of Functionally Graded Materials Containing Multiple Heterogeneities

  • Yu, Jaesang;Yang, Cheol-Min;Jung, Yong Chae
    • Composites Research
    • /
    • 제26권6호
    • /
    • pp.392-397
    • /
    • 2013
  • Functionally graded materials graded continuously and discretely, and are modeled using modified Mori- Tanaka and self-consistent methods. The proposed micromechanics model accounts for multi-phase heterogeneity and arbitrary number of layers. The influence of geometries and distinct elastic material properties of each constituent and voids on the effective elastic properties of FGM is investigated. Numerical examples of different functionally graded materials are presented. The predicted elastic properties obtained from the current model agree well with experimental results from the literature.

Effects of environmental temperature and age on the elastic modulus of concrete

  • Yang, Shuzhen;Liu, Baodong;Li, Yuzhong;Zhang, Minqiang
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.737-746
    • /
    • 2019
  • Concrete mechanical properties change constantly with age, temperature, humidity and the other environmental factors. This research studies the effects of temperature and age on the development of concrete elastic modulus by a series of prism specimens. Elastic modulus test was conducted at various temperatures and ages in the laboratory to examine the effects of temperature and age on it. The experimental results reveal that the concrete elastic modulus decreases with the rise of temperature but increases with age. Then, a temperature coefficient K is proposed to describe the effects of temperature and validated by existing studies. Finally, on the basis of K, analytical models are proposed to determine the elastic modulus of concrete at a given temperature and age. The proposed models can offer designers an approach to obtain more accurate properties of concrete structures through the elastic modulus modification based on actual age and temperature, rather than using a value merely based on laboratory testing.

An Assessment of Elastic and Damping Material Properties of PVC/MBS by an Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성 및 감쇠 특성 평가)

  • 박명균;박세만;최영식;박상규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제12권10호
    • /
    • pp.766-772
    • /
    • 2002
  • In this investigation, experimental attempts were made to observe and determine the variations in elastic and damping properties of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests In this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. It was found that the magnitudes of elastic constants decrease while the damping capacity improve when MBS rubber was added in the range up to 9 phr.

Evaluation of elastic-plastic behavior in MMC interface according to the reinforced fiber placement structure (강화섬유 배치구조에 따른 MMC계면에서의 탄소성거동 평가)

  • Kang, Ji-Woong;Kim, Sang-Tae;Kwon, Oh-Heon
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.410-414
    • /
    • 2004
  • Under longitudinal loading continuous fiber reinforced metal matrix composite(MMC) have interpreted an outstanding performance. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, elastic-plastic behavior of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber placement(square and hexagon) and fiber volume fractions were studied numerically. The interface was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

  • PDF