• Title/Summary/Keyword: elastic materials

Search Result 1,884, Processing Time 0.024 seconds

Study on Anti-Washout Properties and Shear-Thickening Behaviors of Surfactant Added Cement Grouts (계면활성제 혼화제를 첨가한 시멘트 그라우트의 수중 불분리 특성 발현과 점도 증가 효과 연구)

  • Jang, In-Kyu;Seo, Seung-Ree;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.480-484
    • /
    • 2012
  • Concrete, the mixture of cement, sand, gravel and water, is a suspension substance extensively used to construct building materials. When a concrete mortar is applied to the underwater construction, the rheology of concrete is of great importance to its flow performance, placement, anti-washout and consolidation. In this research, the anti-washout and rheological properties of concrete have been investigated with concrete admixtures prepared by adding anionic surfactants, cationic surfactants, and polymeric thickeners. The concrete mortar formulated by pseudo-polymeric systems with the electrostatic association of anionic and cationic surfactants, showed high viscosities and suitable anti-washout properties, but poor pumpabilities. The addition of poly methyl vinyl ether to the mixed surfactant system exhibits synergistic effects by improving the concrete mortar properties of the concrete mortar such as fluidity, visco-elastic property, self-leveling, and anti-washout.

Comport Sensation of Blue Jeans depending on Fiber Contents (청바지의 소재별 쾌적감에 관한 연구)

  • 홍문경;이미식;권계화;전정애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.2
    • /
    • pp.237-248
    • /
    • 2001
  • The purpose of this study was to compare the comfort sensation depending on four different kinds of denim blue jeans: cotton, cotton/tencel, tencel, cotton/pp. The objective and subjective experiments were conducted to measure the comfort of blue jeans. To investigate the objective comfort, physical properties related to thermal insulation, moisture properties and hand were measured. For subjective comfort measurement, 5 healthy female college students were taken as subjects. The outcomes of the experiments are as follows: The higher the air permeability and bulk density of the denim, the lower the thermal insulation, the thicker the denim, the higher the thermal insulation. Tencel blending denim showed the higher bulk density, the lower air contents, and consequently the lower thermal insulation than the other denims. Tencel showed the highest moisture regain, and cotton/tencel blend showed the highest water vapor permeability. Tencel denim had relatively better flexibility, shape stability and elastic recovery than the other denims. The total hand values of the denims by KES-FB system were not significantly different. Cotton and cotton/pp denims raised the subjects body temperature after excercise more than tencel or cotton/tencel denims. Average skin temperature was found to have a correlation with micro climate temperature and micro climate humidity. The correlation coefficients were 0.749 and 0.767, respectively. However, average skin temperatures were not significantly different among the materials. Pulse rate was found to be the highest when wearing cotton/pp and the lowest in case of cotton/tencel denim. The energy was consumed in order of cotton>cotton/pp>tencel>cotton/tencel. There was no significant difference in preference before excercise, but, after the excercise, the order of preference changed as the following; cotton/tencel>tencel>cotton/pp>cotton.

  • PDF

Evaluation of Corrosion Behavior of Railway Axle Material (RSA1) in Seawater (해수환경에서의 차축소재(RSA1) 부식특성 평가)

  • Choi, Dooho;Seo, Sung-il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5039-5044
    • /
    • 2015
  • In this study, we evaluated corrosion behavior of a common rolling stock axle material, RSA1, in seawater. 3-electrode electrochemical cell experiment was conducted using artificial sea water, fabricated according to ASTM-D1141 set by American Society for Testing and Materials, where the corrosion current density and corrosion rate were determined to be $18.3{\mu}A/cm2$ and 0.217 mm/yr, respectively, by employing potentiodynamic test method and impedance spectroscopy method. Considering the fact that life time of railway car is ~25 years, the expected corrosion layer depth is 5mm. Constant-current corrosion test was conducted to accelerate the corrosion process, to reach corrosion periods of 1,3 and 4 years based on Faraday's law, followed by tension tests where the reduced specimen gauge cross-section was re-measured for stress calculation. While no apparent corrosion-related changes in mechanical properties were observed in the elastic regime, the reduction in ductility of the material was found to be increased as the corrosion period increased. The results of this study are expected to be basic corrosion data for the design of rolling stock axles, which will be operated in the sea water environment.

Vibration Analysis of Pears in Packaged Freight Using Finite Element Method (유한요소법을 이용한 골판지 포장화물내 배의 진동해석)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.501-507
    • /
    • 2004
  • Fruits we subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonant frequency. The determination of the resonant frequencies of the fruit may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. The vibration characteristics of the pears in corrugated fiberboard container in transit were analyzed using FEM (finite element method) modeling, and the FEM modeling approach was first validated by comparing the results obtained from simulation and experiment for the pear in the frequency range 3 to 150 Hz and acceleration level of 0.25 G-rms and it was found that between simulated and measured frequencies of the pears have a relatively good agreement. It was observed that the fruit and vegetables in corrugated fiberboard container could be analyzed by finite element method. As the elastic modulus of the cushion materials of corrugated fiberboard pad and tray cup decreased, the first frequencies of upper and lower pears increased and the peak acceleration decreased.

Development of Functional Maternity Wear for Working Women (직장 여성을 위한 기능적인 임부복 개발)

  • Suh, Chu-Yeon;Park, Soon-Jee;Lee, Hee-Jung
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.9
    • /
    • pp.37-52
    • /
    • 2007
  • This research developed maternity wear designed with a focus on the essential functions necessary for working women and adaptable to their body changes during pregnancy. Through Martin's anthropometry for 201 pregnant women, the size specifications for maternity wear was determined and a dress form was proposed, in order to provide the manufacturer with reference data and a prototype to verify their products' fit and suitability. From a monthly analysis on the body measurements of pregnant women, significant monthly differences and after pregnancy were found in weight, chest girth, bust girth, under bust girth, waist girth, and hip girth. Dress form was designed based on the average body measurements of women in their 6th to 10th month of pregnancy. The standard dimensions in the 8th month were 90cm (chest), 94cm (bust), 86cm (under bust), 97cm(waist: most protruding part on the side), and 99cm (hip). Compared with Japan's MAT-9 (for nine months), chest girth was the same, while the Korean waist girth and hip girth were larger by 2cm and 3cm, respectively. The woven fabric blouse was evaluated as having the best appearance, while the knitted fabric one was judged as being more comfortable it terms of functionality. For the pants, the design details of the lowered waist and curved waist belt were more functional. The tailored jacket was the best design for working women in terms of both looks and functionality. To summarize, maternity wear for working women, unlike general maternity clothes, should be designed with consideration for the wearer's somatotype and activity. Elastic materials were appropriate for functionality and dealing with physical changes. With the increasing of working pregnant women, such trials are expected to continue in this research area in order to develop functional maternity wear with multi-purposes such as breast-feeding, wearability after delivery and shielding from microwave.

Evaluation of the Applicability of CLSM by Numerical Method and Field Test (현장시험과 수치해석에 의한 관거 뒤채움용 CLSM 적용성 평가)

  • Nam, Joongwoo;Byun, Yoshep;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.5-12
    • /
    • 2013
  • The safety and structural integrity of buried pipes are usually at risk from constructing loading and compaction of backfill materials. The backfill material should be strong enough to help resistance and redistribute loads so that the buried pipe remains unaffected. Due to the many problems associated with buried pipes, there have been multiple studies on the development of a sustainable backfill material. In this study, a Controlled Low Strength Material made of coal ash was considered as a buried pipe backfill material. To determine the feasibility and performance of this backfill material, a numerical simulation was conducted with the results confirmed by a field test. Results showed maximum settlement to be 2 mm with the elastic strain of the buried pipe to be about 0.006.

Friction Properties between Fiber-Mixed Soil and Geogrid (섬유혼합토와 지오그리드 사이의 마찰 특성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;An, Ju-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.27-37
    • /
    • 2003
  • The factors affecting shear strength and friction characteristics of the fiber-mixed soil can be classified into engineering properties of soil; particle-size, distribution, and particle shape, physical and mechanical properties of fiber; shape, length, diameter, tensile strength, elastic modulus, friction coefficient, and mixed ratio and external factors; confined stress and compaction condition. In this study, a series of shear friction tests and pull-out tests were performed to evaluate the friction properties of fiber-mixed soil according to soil type, fiber type, fiber mixed ratio and compaction degree. The materials and test conditions used in this study are as follows. Soils: SM and ML; mixing fibers: three types of polypropylene fibers(net type 38mm and 60mm, and line type 60mm); reinforcement: geogrid; mixing ratio: 0.2% and 0.3%; degree of compaction : 85% and 95%.

  • PDF

Finite Element Stress Analysis according to Apical-coronal Implant Position

  • Kang, Tae-Ho;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.52-59
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the influence of apical-coronal implant position on the stress distribution after occlusal and oblique loading. Materials and Methods: The cortical and cancellous bone was assumed to be isotropic, homogeneous, and linearly elastic. The implant was apposed to cortical bone in the crestal region and to cancellous bone for the remainder of the implant-bone interface. The cancellous core was surrounded by 2-mm-thick cortical bone. An axial load of 200 N was assumed and a 200-N oblique load was applied at a buccal inclination of 30 degrees to the center of the pontic and buccal cusps. The 3-D geometry modeled in Iron CAD was interfaced with ANSYS. Results: When only the stress in the bone was compared, the minimal principal stress at load Points A and B, with a axial load applied at 90 degrees or an oblique load applied at 30 degrees, for model 5. The von Mises stress in the screw of model 5 was minimal at Points A and B, for 90- and 30-degree loads. When the von Mises stress of the abutment screw was compared at Points A and B, and a 30-degree oblique load, the maximum principal stress was seen with model 2, while the minimum principal stress was with model 5. In the case of implant, the model that received maximum von Mises stress was model 1 with the load Point A and Point B, axial load applied in 90-degree, and oblique load applied in 30-degree. Discussion and Conclusions: These results suggests that implantation should be done at the supracrestal level only when necessary, since it results in higher stress than when implantation is done at or below the alveolar bone level. Within the limited this study, we recommend the use of supracrestal apical-coronal positioning in the case of clinical indications.

A Research on the Design Preferences among and the Development of Functional Clothing Designs for Disabled Women (지체 장애인 여성을 위한 디자인 선호도 조사 및 기능성 의복 디자인 개발 연구)

  • Chung Sham-Ho;Lee Hyun-Jeong
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.6 s.105
    • /
    • pp.58-71
    • /
    • 2006
  • This research is aimed to develop the functional clothing designs for disabled women in the manner of investigating design preferences among them by means of questionnaire and interview with 150 disabled women as respondents and interviewees. The findings of this research are summarized as follows: 1. Regarding satisfaction with ready-made clothes, the respondents answered 'very satisfied' (1.6%), 'usually satisfied' (14.1%), 'moderate' (20.3%) and 'unsatisfied' (53.1%), suggesting that they had been generally unsatisfied with ready-made clothes. 2. There were more disabled women preferring to ready-made clothes with one-grade bigger (loose.) size than the actual one (53.1%) instead of completely fitted size (43.8%) when they purchased such clothes. This result indicates that they prefer to ready-made clothes with bigger size than the actual one because most of such clothes are made up of non-elastic materials which may be unfavorable for wearer's activities. 3. It was found that primarily worn upper garment among them was T-shirt (59.4%). The reason may be that T-shirt is favorable for using prosthesis and orthotics such as wheelchair, walking stick and crutches thanks to its remarkably high activity as well as simple to maintain, compared with other kinds of upper garments. 4. Regarding preferences to functional clothing designs, the primarily worn lower garment among them was trousers (85.9%); the reason was easiness to move. The main reasons of avoiding to wear a skirt included 'difficult to move' (40.6%) and 'exposed disabled region' (30.3%). Accordingly, functional clothing for disabled women should be developed in consideration for their individual characteristics of disability associated with the disabled region such as wheelchair user, crutch user or brace user, In addition, the designs should be made so that they are not different from those for non-disabled people.

Design for moment redistribution in FRP plated RC beams

  • Oehlers, Deric John;Hasketta, Matthew;Mohamed Ali, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.697-714
    • /
    • 2011
  • Assessing the ductility of reinforced concrete sections and members has been a complex and intractable problem for many years. Given the complexity in estimating ductility, members are often designed specifically for strength whilst ductility is provided implicitly through the use of ductile steel reinforcing bars and by ensuring that concrete crushing provides the ultimate limit state. As such, the empirical hinge length and neutral axis depth approaches have been sufficient to estimate ductility and moment redistribution within the bounds of the test regimes from which they were derived. However, being empirical, these methods do not have a sound structural mechanics background and consequently have severe limitations when brittle materials are used and when concrete crushing may not occur. Structural mechanics based approaches to estimating rotational capacities and rotation requirements for given amounts of moment redistribution have shown that FRP plated reinforced concrete (RC) sections can have significant moment redistribution capacities. In this paper, the concept of moment redistribution in beams is explained and it is shown specifically how an existing RC member can be retrofitted with FRP plates for both strength and ductility requirements. Furthermore, it is also shown how ductility through moment redistribution can be used to maximise the increase in strength of a member. The concept of primary and secondary hinges is also introduced and it is shown how the response of the non-hinge region influences the redistribution capacity of the primary hinges, and that for maximum moment redistribution to occur the non-hinge region needs to remain elastic.