• Title/Summary/Keyword: elastic materials

Search Result 1,871, Processing Time 0.027 seconds

Numerical Study on Package Warpage as Structure Modeling Method of Materials for a PCB of Semiconductor Package (반도체 패키지용 PCB의 구조 모델링 방법에 따른 패키지의 warpage 수치적 연구)

  • Cho, Seunghyun;Ceon, Hyunchan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.59-66
    • /
    • 2018
  • In this paper, we analyzed the usefulness of single-structured printed circuit board (PCB) modeling by using numerical analysis to model the PCB structure applied to a package for semiconductor purposes and applying modeling assuming a single structure. PCBs with circuit layer of 3rd and 4th were used for analysis. In addition, measurements were made on actual products to obtain material characteristics of a single structure PCB. The analysis results showed that if the PCB was modeled in a single structure compared to a multi-layered structure, the warpage analysis results resulting from modeling the PCB structure would increase and there would be a significant difference. In addition, as the circuit layer of the PCB increased, the mechanical properties of the PCB, the elastic coefficient and inertia moment of the PCB increased, decreasing the package's warpage.

Morphological Damages of Hair by Heat Formation of Rods during Heat Perm (열 퍼머넌트 웨이브 시술 시 로드의 열 형성에 따른 모발의 형태적 손상에 관한 연구)

  • Oh, Su-Ryeon;Lim, Sun-Nye
    • Journal of Industrial Convergence
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2020
  • In general, heat-based treatments are preferred to form the most natural and elastic curls. Therefore, this study measured the degree of hair damage, which has an influence on hair, in relation to the heat formation of the rods used during perms using a scanning electron microscope (SEM). To examine the influence of the heat formation rods on permanent waves, this study measured the temperature transmitted from such rods. Then, a treatment was given after cutting the hair according to the round shape. According to observation with a SEM, hair breakage was found in the portion in direct contact with the heat, and the broken surface was smooth. According to the study results, it is anticipated that there should be many studies on the rods used during perms in the consideration of their structure and importance using materials that have the property of even heat transmission.

Micromechanical Analysis for Effective Properties of HfC-coated Carbon/Carbon Composites (HfC-코팅 C/C 복합재료의 유효 물성 산출을 위한 미시역학 전산 해석)

  • Roh, Kyung Uk;Kim, Ho Seok;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.961-968
    • /
    • 2020
  • In this study, the effective thermal conductivity and elastic modulus of heat-resistant coating materials are analyzed by using micromechanical computational models. Three-dimensional computational models for HfC-coated carbon/carbon composites were created with Simpleware, and finite element analysis was performed. The porosity and thickness changes in the coating layer were taken into account to identify the tendency of effective material properties. In addition, the coupon specimen was produced to compare the thermal conductivity measured by experiments with the one obtained by finite element analysis according to temperature changes, and the analysis results were close to the measured values. This confirms that micromechanical computational analysis is appropriate in the calculation of effective material properties of coating composites.

Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis

  • Choi, Sung-Min;Choi, Hyunsuk;Lee, Du-Hyeong;Hong, Min-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.396-407
    • /
    • 2021
  • PURPOSE. Zirconia has exceptional biocompatibility and good mechanical properties in clinical situations. However, finite element analysis (FEA) studies on the biomechanical stability of two-piece zirconia implant systems are limited. Therefore, the aim of this study was to compare the biomechanical properties of the two-piece zirconia and titanium implants using FEA. MATERIALS AND METHODS. Two groups of finite element (FE) models, the zirconia (Zircon) and titanium (Titan) models, were generated for the exam. Oblique (175 N) and vertical (175 N) loads were applied to the FE model generated for FEA simulation, and the stress levels and distributions were investigated. RESULTS. In oblique loading, von Mises stress values were the highest in the abutment of the Zircon model. The von Mises stress values of the Titan model for the abutment screw and implant fixture were slightly higher than those of the Zircon model. Minimum principal stress in the cortical bone was higher in the Titan model than Zircon model under oblique and vertical loading. Under both vertical and oblique loads, stress concentrations in the implant components and bone occurred in the same area. Because the material itself has high stiffness and elastic modulus, the Zircon model exhibited a higher von Mises stress value in the abutments than the Titan model, but at a level lower than the fracture strength of the material. CONCLUSION. Owing to the good esthetics and stress controllability of the Zircon model, it can be considered for clinical use.

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.

An Evaluation of Flexural Strength of Hollow Concrete Filled FRP Tube Piles (중공형 콘크리트 충전 FRP Tube 말뚝의 휨강도 산정)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.204-211
    • /
    • 2022
  • In this study, Hollow Concrete Filled FRP Tube Pile(HCFFT Pile) was proposed as a model to utilize the advantages of composite piles and solve the problem of corrosion, which is a disadvantage of CFT piles, and a numerical analysis model was developed to analyze their behavior. The strain compatibility method was applied considering the damage plastic behavior of concrete, the yield plastic behavior of steel, and the elastic behavior of FRP. The flexural strength calculation equation of HCFFT piles was proposed considering the change of the FRP tube section according to the distance from the neutral axis. The flexural strength calculation equation, numerical analysis results, and experimental results were compared and analyzed to verify their adequacy. The results of this study can be used as basic data for the optimal design of various HCFFT piles using FRP.

Coconut shell waste as an alternative lightweight aggregate in concrete- A review

  • Muhammad Fahad, Ejaz;Muhammad ,Aslam;Waqas, Aziz;M. Jahanzaib, Khalil;M. Jahanzaib, Ali;Muhammad, Raheel;Aayzaz, Ahmed
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.299-330
    • /
    • 2022
  • This review article highlights the physical, mechanical, and chemical properties of coconut shells, and the fresh and hardened properties of the coconut shell concrete are summarized and were compared with other types of aggregates. Furthermore, the structural behavior in terms of flexural, shear, and torsion was also highlighted, with other properties including shrinkage, elastic modulus, and permeability of the coconut shell concrete. Based on the reviewed literature, concrete containing coconut shell as coarse aggregate with normal sand as fine showed the 28-day compressive strength between 2 and 36 MPa with the dried density range of 1865 to 2300 kg/m3. Coconut shell concretes showed a 28-day modulus of rupture and splitting tensile strength values in the ranges of 2.59 to 8.45 MPa and 0.8 to 3.70 MPa, respectively, and these values were in the range of 5-20% of the compressive strength. The flexural behavior of CSC was found similar to other types of lightweight concrete. There were no horizontal cracks on beams which indicate no bond failure. Whereas, the diagonal shear failure was prominent in beams with no shear reinforcements while flexural failure mode was seen in beams having shear reinforcement. Under torsion, CSC beams behave like conventional concrete. Finally, future recommendations are also suggested in this study to investigate the innovative lightweight aggregate concrete based on the environmental and financial design factors.

Design guidelines for extending the longevity of fashion products - Focused on women's formal wear - (패션 제품의 수명 연장을 위한 디자인 가이드라인 - 여성 정장을 중심으로 -)

  • Minjung, Im;Moonhee, Park
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.6
    • /
    • pp.799-813
    • /
    • 2022
  • The environment has increasingly attracted attention and fashion brands need to use new growth models by developing eco-friendly products, along with the drastic climate change. This study drew design guidelines from the factors of clothing disposal and reuse to propose ways to extend the longevity of clothing. It sets the design goals for the longevity extension of clothing as flexibility, originality, durability, and adjustability and drew a specific design guideline. The design methods used to achieve such goals are as follows. First, the design that is flexible in terms of physical changes needs to increase its activity and to be changeable, by applying pleats, rubber bands and elastic materials to the parts with many physical changes and movements. Second, it is necessary to reinforce the brand identity, create design that is flexible in terms of fashion and design very rare and attractive products, for the goal of original design beyond fashion. Third, it is necessary to increase the quality of clothing and improve the durability which can be decreased by washing and wearing. Fourth, it is necessary to create the design that can produce various styles, preserve the state of clothing and maintain its hygienic conditions by using removable detailed designs, shape-transformation designs and the designs which can be adjusted to climate changes and states, for the goal of adjustable design with better functionality. The findings provide ideas for fashion experts to pay more attention to the extending the longevity of clothing products and to develop eco-friendly designs and strategies.

Change in Microstructure with the Gas Quenching Rate during Austempering Treatment of SAE 1078 Steel (SAE 1078 강의 오스템퍼링 열처리시 가스 퀜칭 속도에 따른 미세조직의 변화)

  • Gi-Hoon Kwon;Hyunjun Park;Kuk-Hyun Yeo;Young-Kook Lee;Sang-Gweon Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • When high carbon steel is heated in an appropriate austenizing temperature range and subjected to austempering, the size and shape of lamellar structure can be controlled. The high carbon steel sheet having the pearlite structure has excellent elastic characteristics because it has strong restoring force when properly rolled, and is applied in a process known as patenting-process using lead bath. In the case of isothermal treatment using lead-medium, it is possible to quickly reach a uniform temperature due to high heat transfer characteristics, but it is difficult to replace it with process technology that requires treatment to remove harmfulness lead. In this study, we intend to develop fluidization technology using garnet powder to replace the lead medium. After heating the high-carbon steel, the cooling rate was changed by compressed air to the vicinity of the nose of the continuous cooling curve, and then maintained for 90 s and then exposed to room temperature. The microstructure of the treated specimens were analyzed and compared with the existing products treated with lead bath. The higher the flow rate of compressed air, the faster the cooling rate to the pearlite transformation temperature, so lamellar spacing decreases and the hardness tends to increase.

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.