• Title/Summary/Keyword: elastic material behavior

Search Result 634, Processing Time 0.021 seconds

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Composite Finite Element Analysis of Axisymmetric Layered Systems (축대칭 층구조체의 복합이론 및 유한요소해석프로그램의 개발)

  • Lim, Chong Kyun;Park, Moon Ho;Kim, Jin Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.29-38
    • /
    • 1994
  • Linear composite theory as well as a finite element program is developed for axisymmetric elastomeric bearings. This study is limited to axisymmetrically loaded horizontal layered systems with linear, elastic, small' deformation conditions. A multiscale method is used in the development of the composite theory which enables us to model inhomogeneous layered composites as equivalent homogeneous, orthotropic material. Only continuity of the prime variables is required for the finite element analysis, allowing the use of simple $C_o$ elements whereas rather complicated theories presented in the past need more requirements. Four node isoparametric elements are used in the study. The developed theory of this paper is limited to linear conditions, however, the analysis can be extended to nonlinear behavior of flexible material in elastomeric bearing by using multiscale method presented here. Two numerical examples are examined and compared to the results of discrete and previously obtained composite analysis to verify the theory.

  • PDF

Shape Optimal Design of Anti-Vibration Rubber Assembly to Reduce the Vibration of a Tractor Cabin (트랙터 캐빈의 진동저감을 위한 방진고무의 형상최적설계)

  • Choi, Hyo-Joon;Lee, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.657-663
    • /
    • 2018
  • In this study, shape optimization was performed to improve the vibration isolation capability of an anti-vibration rubber assembly, which is used in the field option cabin of agricultural tractors. A uniaxial tension test and biaxial tension test were performed to characterize the hyper-elastic material properties of rubber, and the data were used to calibrate the material model used in the finite element analyses. A field test was performed to quantify the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, static analyses were performed and the load-displacement curve of rubber was derived. The stiffness of the rubber was calculated from this curve and input to the harmonic analyses of the cabin. The results were verified using the test data. Taguchi's parameter design method was used to find the optimal shape of the anti-vibration rubber assembly, which indicated a shape with reduced stiffness. The vibration of the cabin frame was reduced by the optimization by as much as 35% compared to the initial design.

Material Nonlinear Analysis of the RC Shells Considering Tension Stiffening Effects (인장강성 효과를 고려한 RC 쉘의 재료비선형 해석)

  • Jin, Chi Sub;Eom, Jang Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.99-107
    • /
    • 1993
  • In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.

  • PDF

Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression

  • Tian, Wen-Ling;Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-560
    • /
    • 2017
  • In this research, experimental and numerical simulations were adopted to investigate the effects of ligament angle on compressive strength and failure mode of rock-like material specimens containing two non-coplanar filled fissures under uniaxial compression. The experimental results show that with the increase of ligament angle, the compressive strength decreases to a nadir at the ligament angle of $60^{\circ}$, before increasing to the maximum at the ligament angle of $120^{\circ}$, while the elastic modulus is not obviously related to the ligament angle. The shear coalescence type easily occurred when ${\alpha}$ < ${\beta}$, although having the same degree difference between the angle of ligament and fissure. Numerical simulations using $PFC^{2D}$ were performed for flawed specimens under uniaxial compression, and the results are in good consistency with the experimental results. By analyzing the crack evolution process and parallel bond force field of rock-like material specimen containing two non-coplanar filled fissures, we can conclude that the coalescence and propagation of crack are mainly derived from parallel bond force, and the crack initiation and propagation also affect the distribution of parallel bond force. Finally, the displacement vectors in ligament region were used to identify the type of coalescence, and the results coincided with that obtained by analyzing parallel bond force field. These experimental and numerical results are expected to improve the understanding of the mechanism of flawed rock engineering structures.

Development of a Method for Characterizing Single-Fiber Composite Interphase from Frequency-Domain Characteristics of Ultrasonic Scattered Waves (산란 초음파의 주파수 특성을 이용한 단일 섬유 복합재료의 인터페이즈 평가법 개발)

  • Kim, Woong-Ki;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.100-109
    • /
    • 1999
  • A method is proposed to characterize single-fiber composite interphases from the frequency-domain characteristics of scattered ultrasonic waves, and its feasibility is investigated theoretically. It has been shown that the locations and magnitudes of the peaks and valleys in the frequency domain are affected significantly by the interphase properties, which may indicate the effectiveness of the proposed method. Although the frequency-domain behavior is basically associated with the resonance of the fiber-interphase system, it is not dominantly affected by the scatterer's resonance unlike that in the case of acoustic wave scattering. Therefore, the conventional acoustic resonant scattering theory is not directly applicable to the characterization of composite interphases. In order to solve the inverse problem of predicting the interphase properties from the frequency-domain characteristics of the ultrasonic scattered waves, an artificial neural network has been constructed. This approach has demonstrated reasonable accuracy in most cases considered in this study.

  • PDF

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

A Study on the Fracture Behavior of a Crack in 9% Ni Steel Considering Constraint Effect (구속효과를 고려한 9% Ni강 균열의 파괴거동 해석에 관한 연구)

  • Kim, Young Kyun;Yoon, Ihn soo;Kim, Jae Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.14-21
    • /
    • 2021
  • Inner shell material of LNG storage tanks that store ultra-low temperature LNG at -162℃ requires structural integrity assessment of a crack-like defect. From the viewpoint of conventional fracture mechanics, the assessment has mainly performed by single parameter using stress intensity factor K, J-integral and CTOD. However, the stresses in a material of crack tip are not unique caused by constraint loss due to size and geometry of the structure. Various attempts have been made to complement a single parameter fracture mechanics, typically with Q-stress. In this paper, we have performed a two-parameter approach by deriving the Q-stress coupling with J-integral suitable for the evaluation of the crack tip stress field in the non-linear elastic region. A quantitative evaluation of the constraint effect has performed by using the J-Q approach. It was evaluated that the SENB type specimen had a crack ratio of 0.1 to 0.7 and the wide type specimen had a crack ratio of 0.2 to 0.6.

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.