• Title/Summary/Keyword: elastic loss

Search Result 240, Processing Time 0.028 seconds

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀롤로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-oh;Kim, Kyoung-woo;Yang, Kwan-seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF

Stress analysis of non carious cervical lesion and cervical composite resin restoration (지상강좌 1 - 비우식성 치경부병소와 치경부 복합레진수복의 응력분석)

  • Park, Jeong-Kil
    • The Journal of the Korean dental association
    • /
    • v.48 no.4
    • /
    • pp.297-307
    • /
    • 2010
  • Noncarious cervical lesions(NCCLs) are characterized as structural defects found on the tooth surface of the cement-enamel junction. Loss of tooth structure through noncarious mechanisms may vary in etiology and clinical presentation for each individual but presently many clinician now classify this as tooth failure of abfraction due to the stress applied in the cervical area of the tooth under oral physiological and pathological loads. In the current study, we investigated the stress distribution of maxillary premolar with NCCL using simulated 3D finite element analysis. The results were as follows: 1. In the sound maxillary premolar, the stresses were highly concentrated at cervical enamel surface of the mesiobuccal line angle, asymmetrically. 2. Once the lesion has been formed, the highest stress concentration was observed around the apex of the wedge shaped lesion. 3. In four types of NCCL, the patterns of stress distribution were similar and the peak stress was observed at mesial corner and also stresses concentrated at lesion apex. 4. Lesion cavity modification of rounding apex, reduced stress of lesion apex. 5. When restoring the notch-shaped lesion, material with high elastic modulus worked well at the lesion apex and material with low elastic modulus worked well at the cervical cavosurface margin.

Effects of ta-C Coatings on Surface Characteristics of Dental Ni-Ti Files (치과용 Ni-Ti파일의 표면특성에 미치는 ta-C코팅효과)

  • Sun-Kyun Park;Han-Cheol Choe
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.368-376
    • /
    • 2023
  • Dental Ni-Ti files must ensure stability and resistance to fatigue fracture. DLC and ta-C were coated to remove defects on the surface and ensure stability, and the surface characteristics were investigated. When coated with DLC, it was black, and in case of ta-C coating, it was blue-black. Scratches, which are defects caused by mechanical processing, were formed on the surface of the un-coated Ni-Ti file from the end of the file along the direction of processing, with the Pro-file appearing in the vertical direction and the K-file appearing in the file direction. Scratches were reduced on the coated surface, and the surface roughness was greatly reduced after coating compared to before coating. The un-coated Ni-Ti file had the lowest hardness, the DLC-coated file had the highest hardness, and ta-C showed relatively high hardness. The elastic modulus of the DLC coating film was high, and the ta-C elastic modulus was low. The adhesion of the DLC coating film tended to be higher than that of ta-C, and the wear loss amount of DLC coating of taC was lower. The corrosion potential of the ta-C coating increased significantly, and the corrosion current density decreased.

A study on the evaluation of structural stability of masonry cultural heritage based on the characteristics of the back-fill material and the stiffness of the ground (뒤채움재의 물성과 지반의 강성에 따른 석축 문화재의 구조 안정성 평가 연구)

  • Lee, Ga-Yoon;Lee, Sung-Min;Kim, Jae Young;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • The cultural heritage of fortresses is often exposed to external elements, leading to significant damage from stone weathering and natural disasters. However, due to the nature of cultural heritage, dismantling and restoration are often impractical. Therefore, the stability of fortress cultural heritage was evaluated through non-destructive testing. The durability of masonry cultural heritages is greatly influenced by the physical characteristics of the back-fille material. Dynamic characteristics were assessed, and endoscopy was used to inspect internal fillings. Additionally, a finite element analysis model was developed considering the surrounding ground through elastic wave exploration. The analysis showed that the loss of internal fillings in the target cultural heritage site could lead to further deformation in the future, emphasizing the need for careful observation.

Comparision of the Properties of UV-cured Polyurethane Acrylates Containing Different Diisocyanates and Low Molecular Weight Diols

  • Yoo, Hye-Jin;Lee, Young-Hee;Kwon, Ji-Yun;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.122-128
    • /
    • 2001
  • UV-curable polyurethane acrylate prepolymers were prepared from diisocyanates [isophorone diisocyanate (IPDI), 2,4-toluene diisocyanate (TDI), or 4,4'-dicyclohexylmethane diisocyanate (H$_{12}$MDI)], diols [ethylene glycol (EG), 1,4-butane diol (BD), or 1,6-hexane diol (HD)], polypropylene glycol as a polyol. UY-curable mixtures were formulated from the prepolymer (90 wt%), reactive diluent monomer trimethylol propane triacrylate (10 wt%). and photoinitiator 1-hydroxycy-clohexyl ketone (3 wt% based on prepolymer/diluent). The effects of different diisocyanates/low molecular weigh dial on the dynamic mechanical thermal properties and elastic recovery of UV-cured polyurethane acrylate films were examined. The tensile storage modulus increased a little in the order of EG > BD > HD at the same diisocyanate. Two loss modulus peaks for all samples are observed owing to the glads transition of softs segments ($T_gh$) and the glass transition temperature of hard segments ($T_gh$). For the same diisocyanate, $T_gh$, decreased, however, $T_gh$ increased, in the order of HD > BD > EG. The elastic recovery also increased in the order of HD > BD > EG at the same diisocyanate. In case of same diols, $T_gh$ increased in the order of $H_12$MDl > TDI > IPDI significantly. The ultimate elongation and elastic recovery increased in the order of TDI > IPDI > $H_12$MDl at the same diol.l.

  • PDF

Structural Analysis of Cheju-style Plastic Greenhouse Model for Crop Growing Based on the Wind Load (풍하중을 고려한 제주형 작물재배용 비닐하우스모델의 구조해석)

  • 민창식;김용호;권기린
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 1998
  • An elastic analysis under wind load was performed for the double layered plastic greenhouse model developed particularly for minimizing damages under typhoons at Cheju Citrus Research institute in Seagipo city. General EVA film was used for the inner covering and the developed special film which would break the wind pressure down was used for the outer covering. The wind tunnel test showed this special film reduced the wind speed up to 86 to 98% under well controlled situation. Based on the elastic analysis performed in the study, the behavior of the greenhouse was changed significantly due to the boundary conditions. Not like other researchers before we applied dead load of the concrete support to the ground pipe and fixed support boundary conditions at the 4 corner pipes. The analysis shows that the greenhouse was lifted and pulled the pipe out of the ground due to the sucking wind pressure. The behavior of the greenhouse was quite similar to that one real greenhouse failure. Therefore, not only we need to find the realistic boundary conditions for the supports, but also need to find how to rest the pipe supports on the ground without economic loss.

  • PDF

Thermoplastic Film Infusion Process for Long Fiber Reinforced Composites Using Rubber Expandable Tools (고무 치공구와 필름 함침공정을 이용한 열가소성 장섬유 복합재료 성형공정 연구)

  • Kim, Dong-Wook;An, Young-Sun;Lee, Young-Kwan;Kim, Seong-Woo;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.122-132
    • /
    • 2001
  • Thermoplastic film infusion process was investigated by using a rubber tool, which intrinsically contains a thermally-expandable characteristic and effectively compensates for the pressure loss caused by thermoplastic polymer infusion. Increasing temperature up to the melting temperature of matrix, the polymer melt subsequently infused into the dry fabric, but the pressure was successfully sustained by the rubber tool. Even with the decreased resin volume, the rubber tool produced sufficiently high elastic force for continuous resin infusion. Combining D'Arcy's law with the compressibility of rubber tool and elastic fiber bed, a film infusion model was developed to predict the resin infusion rate and pressure change as a function of time. In addition, the film infusion process without the rubber tool was viewed and analyzed by a compression process of the elastic fiber bed and viscous resin melt. The compressibility of fiber bed was experimentally measured and the multiple-step resin infusion was well described by the developed model equations.

  • PDF

Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 동적 점탄성)

  • Song, Ki-Won;Bae, Jun-Woong;Chang, Gap-Shik;Noh, Dong-Hyun;Park, Yung-Hoon;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.295-307
    • /
    • 1999
  • Using a Rheometries Fluids Spectrometer (RFS II), the dynamic viscoelastic properties of aqueous poly(ethylene oxide) (PEO) solutions in small amplitude oscillatory shear flow fields have been measured over a wide range of angular frequencies. The angular frequency dependence of the storage and loss moduli at various molecular weights and concentrations was reported in detail, and the result was interpreted using the concept of a Deborah number De. In addition, the experimentally determined critical angular frequency at which the storage and loss moduli become equivalent was compared with the calculated characteristic time (or its inverse value), and their physical significance in analyzing the dynamic viscoelastic behavior was discussed. Finally, the relationship between steady shear flow and dynamic viscoelstic properties was examined by evaluating the applicability of some proposed models that describe the correlations between steady flow viscosity and dynamic viscosity, dynamic fluidity, and complex viscosity. Main results obtained from this study can be summarized as follows: (1) At lower angular frequencies where De<1, the loss modulus is larger than the storage modulus. However, such a relation between the two moduli is reversed at higher angular frequencies where De>l, indicating that the elastic behavior becomes dominant to the viscous behavior at frequency range higher than a critical angular frequency. (2) A critical angular frequency is decreased as an increase in concentration and/or molecular weight. Both the viscous and elastic properties show a stronger dependence on the molecular weight than on the concentration. (3) A characteristic time is increased with increasing concentration and/or molecular weight. The power-law relationship holds between the inverse value of a characteristic time and a critical angular frequency. (4) Among the previously proposed models, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. The Osaki relation can be regarded to some extent as a suitable model. However, the DeWitt, Pao and HusebyBlyler models are not applicable to describe the correlations between steady shear flow and dynamic viscoelastic properties.

  • PDF

Cure Kinetics and chemorology of silica filled DGEBA/Polyxoypropylenediamine epoxy system (무기물이 충진된 에폭시수지의 경화반응과 유변학적 거동에 관한 연구)

  • 윤은상;이기윤;김대수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.125-126
    • /
    • 1994
  • The chemorheological changes and kinetics during curing reaction of an silica filled epoxy system (DGEBA with curing agent Polyxoypropylenediamine) were investigated. This study concentrates on the influence of silica on the reaction kinetics and rheological behavior of the eopxy system. The concentration of the filler was varied 0~200phr. Curing behavior of the silica filled epoxy system was measured at various heating rates with DSC. Conversion was also measured by integrating the obtained DSC curve and Kinetic parameters measured by using the nonlinear regression method. DSC experiments showed that the presence of silica was found to accelerate the progress of the curing reaction and of reduce the heat of reaction compared with that of unfilled epoxy systems . Rheological experiments were conducted on a Physica by using a disposable parallel plate fixture. Material properites were measured such as the elastic modulus(G′), the loss modulus(G"), the loss tangent(tan $\delta$), and the viscosity was at the initial stahe, and the more the silica filler was added, and the lower the gel temperature was in the epoxy system. In this study it is concluded that the curing of the silica filled epoxy system was found to be accelerated, as silica was added to the epoxy compound.

  • PDF

A Two-dimensional Steady State Simulation Study on the Radio Frequency Inductively Coupled Argon Plasma

  • Lee, Ho-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.246-252
    • /
    • 2002
  • Two-dimensional steady state simulations of planar type radio frequency inductively coupled plasma (RFICP) have been performed. The characteristics of RFICP were investigated in terms of power transfer efficiency, equivalent circuit analysis, spatial distribution of plasma density and electron temperature. Plasma density and electron temperature were determined from the equations of ambipolar diffusion and energy conservation. Joule heating, ionization, excitation and elastic collision loss were included as the source terms of the electron energy equation. The electromagnetic field was calculated from the vector potential formulation of ampere's law. The peak electron temperature decreases from about 4eV to 2eV as pressure increases from 5 mTorr to 100 mTorr. The peak density increases with increasing pressure. Electron temperatures at the center of the chamber are almost independent of input power and electron densities linearly increase with power level. The results agree well with theoretical analysis and experimental results. A single turn, edge feeding antenna configuration shows better density uniformity than a four-turn antenna system at relatively low pressure conditions. The thickness of the dielectric window should be minimized to reduce power loss. The equivalent resistance of the system increases with both power and pressure, which reflects the improvement of power transfer efficiency.