• Title/Summary/Keyword: ejection

Search Result 698, Processing Time 0.027 seconds

A Study on Misdiagnosis Rates of Ejection Fraction Associated with Cardiac Computed Tomography: Suggestions and Correction for Improvement (심장 전산화단층촬영을 이용한 박출계수 산출 시 박출계수의 보정을 통한 오진율 개선에 관한 연구)

  • Na, Sa-Ra;Jeong, Mi-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.437-444
    • /
    • 2021
  • The aim of this study was to compare the cardiac CT and cardiac MRI in calculating and correcting the left ventricle ejection fraction by analyzing the physical and temporal resolution for reducing the misdiagnosis rate. One hundred thirty-eight patients with aortic value regurgitation who underwent both cardiac CT and cardiac MRI were analyzed. Left ventricle ejection fractions calculated from each exam were corrected based on the physical and temporal resolution differences and the reliability test evaluated whether the misdiagnosis rate of cardiac CT was improved after the correction. As a result of the study, the misdiagnosis rate of cardiac CT ejection fraction before correcting the difference in physical and temporal resolution was 38.4%(53 persons). In addition, it can be seen that the corrected cardiac CT ejection fraction confirmed in the Bland-Altman plot was highly consistent with the ejection fraction of cardiac MRI. In conclusion, as the cardiac CT is less well suited for measuring ejection fraction, physical characteristics and the time resolution correction using cardiac MRI is needed and the misdiagnosis rate after correction decreased to 14.5%(20 persons). Therefore, this study appears more appropriate for better prediction of ejection fraction and clinical utility.

Numerical Study on Bubble Growth and Droplet Ejection in a Bubble Inkjet Printer (버블 잉크젯에서의 기포성장 및 액적분사에 관한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1107-1116
    • /
    • 2006
  • The droplet ejection process driven by an evaporating bubble in a thermal inkjet printhead is investigated by numerically solving the conservation equations for mass, momentum and energy. The phase interfaces are tracked by a level set method which is modified to include the effect of phase change at the interface and extended for multiphase flows with irregular solid boundaries. The compressibility effect of a bubble is also included in the analysis to appropriately describe the bubble expansion behaviour associated with the high pressure caused by bubble nucleation. The whole process of bubble growth and collapse as well as droplet ejection during thermal inkjet printing is simulated without employing a simplified semi-empirical bubble growth model. Based on the numerical results, the jet breaking and droplet formation behaviour is observed to depend strongly on the bubble growth and collapse pattern. Also, the effects of liquid viscosity, surface tension and nozzle geometry are quantified from the calculated bubble growth rate and ink droplet ejection distance.

Analysis of Electrostatic Ejection of Liquid Droplets in Manner of Drop-on-demand Using High-speed Camera (고속카메라를 이용한 Drop-on-demand 방식의 정전 액적 토출 분석)

  • Kim, Yong-Jae;Choi, Jae-Yong;Son, Sang-Uk;Kim, Young-Min;Lee, Suk-Han;Byun, Do-Young;Ko, Han-Seo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.128-133
    • /
    • 2007
  • An electrostatic inkjet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head has been proposed using the electrostatic force. A numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Also, experiments have been carried out to investigate the droplet movement using a downward capillary with outside diameter of $500{\mu}m$. Gravity, surface tension, and electrostatic force have been analyzed with high voltages for a drop-on-demand ejection. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field using high-speed camera.

  • PDF

Responsiveness of Dendrites to the Glutamate Applied Focally with Pressure Ejector and Iontophoresis into Hippocampal Slices

  • Kim, Jin-Hyuk;Shin, Hong-Kee;Chang, Hyun-Ju;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.457-466
    • /
    • 2001
  • Glutamate is the most common excitatory amino acid in the brain. Responsiveness of dendrites to the glutamate greatly varies depending on the application sites. Especially, a point of the maximal response to the glutamate of the dendrite is called as 'hot spot'. In our experiment, the responsiveness of the hot spot to the glutamate was investigated in the CA1 pyramidal neuron of the rat hippocampal slice. CNQX, the antagonist of AMPA receptor, blocked 95% of membrane current to the glutamate focal application $(I_{gl}).$ Train ejection of glutamate on one point of the dendrite increased or decreased the amplitude of $I_{gl}$ with the pattern of train, and the changes were maintained at least for 30 min. In some cases, glutamate train ejection also induced calcium dependent action potentials. To evoke long-term change of synaptic plasticity, we adopted ${\theta}-burst$ in the glutamate train ejection. The ${\theta}-burst$ decreased the amplitude of glutamate response by 60%. However, after ${\theta}-burst$ glutamate train ejection, the calcium dependent action potential appeared. These results indicated that the focal application of glutamate on the neuronal dendrite induced response similar to the synaptic transmission and the trains of glutamate ejection modulated the change of AMPA receptor.

  • PDF

Effect of Korea Red Ginseng on the Symptoms and Hemodynamics in Healthy Elders

  • Jin En-Yuan;Li Ya-Jun;Yang Lian-Xing;Jin Ming;Wei Yu-Lin;Nam Ki Yeul
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.27-34
    • /
    • 2002
  • Clinical study on hemodynamics of healthy elders before and after tread mill. Using doubleblind, placebo-controlled study design. Seventy-five 50-70 years old volunteers without organic disease were divided into two groups, Ginseng group and control group. Each subject was received 3 g Korea Red Ginseng (KRG) capsules or placebo per day for 4 weeks. Before and after administration 4 weeks, the symptoms were asked and hemodynamics parameter such as pump function, systolic function, preload and afterload were recorded before and after tread mill 1,5, 10 minutes by the method of thoracic impedance cardiograph. The result showed that Ginseng could improve quality of life, had obvious effect of increasing PEP (pre-ejection period), PEP/LVET (pre-ejection period/left ventricular ejection period), PCWP (wedged pressure pulmonary capillary). The change rate of HR (heart rate), SV (stroke volume) in KRG group were much lowered, while EF (ejection fraction), LVET (left ventricular ejection period), LVEDP (left ventricular end diastolic pressure) was recovered much quickly. The circulation showed Ginseng could improve the quality of life though its promoting circulation function which are increasing both the systolic function and the preload.

  • PDF

Analysis of Ejection System of Projectile with Compressed Air (압축공기를 이용한 발사체 방출시스템 해석)

  • Kwon, Yong-Hun;Kim, Jun-Bum;Park, Warn-Gyu;Han, Myung-Chul;Ahn, Jae-Yul;Jung, Chan-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1488-1493
    • /
    • 2004
  • The purpose of the present work is to develop a compressed air discharging system to eject a projectile from the underwater. For the flow analysis of compressed air tank, projectile ejection tube, and pipe system, the air is assumed as an ideal gas, undergoing 1-dimensional axisymmetric, compressible flow, the Fanno flow analysis was applied. The commercial Fluent code was used to solve 3-D Navier-Stokes equation of the internal flow within the valve. The dynamics of the projectile within the ejection tube was assumed 1-degree of freedom. The calculations were performed to four cases of valve opening area ratio, i.e., 25%, 50%, 75%, and 100% opening area, at both depths of 10m and 50m. The results were shown as the figures of time variation of pressure of the compressed air tank and projectile ejection tube. The velocity and distance of the projectile were also predicted.

  • PDF

NUMERICAL STUDY OF THE EFFECTS OF THE GOVERNING NON-DIMENSIONAL PARAMETERS ON THE DROPLET EJECTION BEHAVIOR (액적의 분사 거동을 지배하는 무차원수에 대한 수치해석적 연구)

  • Kim, E.;Baek, J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2012
  • The droplet ejection behavior from drop-on-demand printhead are investigated numerically in terms of the non-dimensional parameters. The numerical simulation is performed using a volume-of-fluid model. It is important to eject droplet within the printability range, where the droplet is ejected in stable manner without satellite droplets. Generally, the printability range has been determined by Z number, which is the inverse of Oh number. However, it is found that the ejection of droplets with same Z number can exhibit different behavior depending on the value of Ca and We number. Therefore, it is insufficient to determine the printability range only with Z number. Instead, other non-dimensional parameters, such as Ca and We number, should be considered comprehensively.

A Development of Plasma Jet to Realize Ultra Lean Burn (초희박 연소를 실현하기 위한 플라즈마 제트의 개발)

  • 오병진;박정서;김문헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 1998
  • The investigation regarding the ignition system of a plasma jet explored by using a constant volume vessel. The purpose of this study is to elucidate relation between the characteristics of the configuration and jet ejection of plasma jet plug, when the sub energy were supplied at plasma jet ignition system. From the results of a visualization by the schlieren system, the jut ejection for plasma jet ignition are depended on the jet plug configuration and sub energy, but the configuration of plasma jet plug is more influenced than the sub energy on the plasma jet ejection. And the plasma jet ignition strongly influences upon the combustion enhancement than the conventional spark ignition.

  • PDF

Effect of Outer Nozzle Ejection Angle on Jet Structure issuing from Supersonic Dual Coaxial Nozzle (초음속 동축 제트의 구조에 미치는 외부노즐 분사각의 영향)

  • Baek, Seung-Cheol;Kwon, Soo-Young;Joo, Seong-Yeol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.426-431
    • /
    • 2001
  • This paper experimentally investigates the characteristics of dual coaxial jet issuing from inner supersonic nozzle and four kinds of outer converging nozzle of 40, 50, $60^{\circ}$ and $70^{\circ}$ in outer ejection angle. The pressure ratio of the stagnation to the exit ambient pressures in the inner supersonic nozzle of constant expansion rate is 7.5, which is corresponded to the condition of a slightly underexpanded, and that of outer nozzle is 4.0. Flow visualizations by using of shadowgraph method, impact pressure and centerline static pressure measurements are presented. It is found that the jet structure is changed significantly by the variation of outer nozzle ejection angle. Impact pressure level is lower and undulation of static pressure is higher, as the injection angle of outer jet increases.

  • PDF

A Study of the Safety Assessment for Combustion Products in the Exposure Human Bodies Rounding Missile Ejection (유도탄 사출시 연소 생성물의 인체 안전성 평가에 관한 연구)

  • Song, Kee Hyeok;Chung, Sung-Hak
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.269-273
    • /
    • 2014
  • The objective of this study is to safety assessment for human body on the guided missile combustion products. This study is to verify the safety assessment when operating the interior missile ejection take on verify the safety of the human body. During the missile ejection of combustion products, this study is analyzed combustion products. Result are accepted NIOSH and KOSHA of the safe guideline, and 6 exposure gas to the specified values 42% (CO), 22% ($CO_2$), not detected (others) are within minimal exposures criteria of the reference value respectively. Contribution of these results supported that interior missile ejection during combustion products may have been ensured human safely. Therefore, the future for improving the environmental safety of the shooting projectile steel plate round, dust collector, ventilation and other facilities is to improve environmental safety and efficient renovated design needed by target focused areas.