• Title/Summary/Keyword: ejection

Search Result 708, Processing Time 0.032 seconds

Green Body Behaviour of High Velocity Pressed Metal Powder

  • Jonsen, P.;Haggblad, H.A.;Troive, L.;Furuberg, J.;Allroth, S.;Skoglund, P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.22-23
    • /
    • 2006
  • High velocity compaction (HVC) is a production technique with capacity to significantly improve the mechanical properties of powder metallurgy (PM) parts. Investigated here are green body data such as density, tensile strength, radial springback, ejection force and surface flatness. Comparisons are performed with conventional compaction using the same pressing conditions. Cylindrical samples of a pre-alloyed water atomized iron powder are used in this experimental investigation. The HVC process in this study resulted in a better compressibility curve and lower ejection force compared to conventional quasi static pressing. Vertical scanning interferometry measurements show that the HVC process gives flatter sample surfaces.

  • PDF

The Development of Mono-sized Micro Silicon Particles for Spherical Solar Cells by Pulsated Orifice Ejection Method

  • Dong, Wei;Masuda, Satoshi;Takagi, Kenta;Kawasaki, Akira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.426-427
    • /
    • 2006
  • Mono-sized silicon particles were effectively fabricated by a novel way named pulsated orifice ejection method (POEM). The particles are with very narrow particles size distribution and very small standard deviation of mean particle size. There are two different types spherical silicon particles were found. One consists of many grains mainly in random boundaries. The other consists of two or three grains with only twin orientation relationships, even single crystal in cross-section was also found within this type of spherical silicon particles.

  • PDF

Fabrication of MEMS Inkjet Head for Drop-on-Demand Ejection of Electrostatic Force Method (정전기력 방식의 Drop-on-Demand 토출을 위한 MEMS 잉크젯헤드 제작)

  • Son, S.U.;Kim, Y.M.;Choi, J.Y.;Ko, H.S.;Kim, Y.J.;Byun, D.Y.;Lee, S.H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1441-1444
    • /
    • 2007
  • This paper presents a novel electrostatic drop-an-demand ejector with a conductive pole inside nozzle. The MEMS fabricated pole-type nozzle shows a significant improvement in the performance and reliability of forming meniscus and generating a micro dripping mode of droplet out of the meniscus. It is verified experimentally that the use of the pole-type nozzle. The liquid is used D20+SDS+SWNT (5 %wt). The gap between upper electrode and nozzle is about 600 um. Electrostatic drop-an-demand ejection is observed when a DC voltage of 1.5 kV is applied between the control electrode and ground electrode. Droplet diameter is $100{\mu}m$.

CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

  • Perin, Yann;Velkov, Kiril
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1339-1345
    • /
    • 2017
  • In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

Beta Blockers in Contemporary Cardiology: Is It Better to Cast Them Out?

  • Javaid Ahmad Dar;John Roshan Jacob
    • Korean Circulation Journal
    • /
    • v.54 no.4
    • /
    • pp.165-171
    • /
    • 2024
  • Beta blockers are one of the commonest prescription drugs in medicine and they have been thought to revolutionize the treatment of heart failure (HF) with reduced ejection fraction (HFrEF) in the last century. In addition to HFrEF, they are prescribed for a variety of diseases in cardiology from hypertension to HF, angina, and stable coronary artery disease (CAD). The increased prescription of beta blockers in conditions like HF with preserved ejection fraction (HFpEF), and stable CAD may be doing more harm than good as per the data we have so far. The available data shows that beta blockers are associated with increased stroke risk and atrial fibrillation (AF) in hypertension and in patients with HFpEF, they have been associated with decreased exercise capacity. In patients with stable CAD and patients with myocardial infarction with normal systolic functions, beta blockers don't offer any mortality benefit. In this article, we critically review the common indications and the uses of beta blockers in patients with HFpEF, CAD, hypertension and AF and we propose that beta blockers are overprescribed under the shadow of their beneficial effects in patients with HFrEF.