• Title/Summary/Keyword: eigenvalue and eigenvector analysis

Search Result 64, Processing Time 0.023 seconds

Stress Fields for the V-notched Crack and Fracture Parameters by Boundary Collocation Method (V-노치균열의 응력장과 경계배치법에 의한 파괴변수)

  • Pae, Jung-Pae;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.66-76
    • /
    • 2003
  • The arbitrary V-notched crack problem is considered. The general expressions for the stress components on this problem are obtained as explicit series forms composed of independent unknown coefficients which are denoted by coefficients of eigenvector. For this results eigenvalue equation is performed first through introducing complex stress functions and applying the traction free boundary conditions. Next solving this equation, eigenvalues and corresponding eigenvectors are obtained respectively, and finally inserting these results into stress components, the general equations are obtained. These results are also shown to be applicable to the symmetric V-notched crack or straight crack. It can be shown that this solutions are composed of the linear combination of Mode I and Mode II solutions which are obtained from different characteristic equations, respectively. Through performing asymptotic analysis for stresses, the stress intensity factor is given as a closed form equipped with the unknown coefficients of eigenvector. In order to calculate the unknown coefficients. based on these general explicit equations, numerical programming using the overdetermined boundary collocation method which is algorithmed originally by Carpenter is also worked out. As this programming requires the input data, the commercial FE analysis for stresses is performed. From this study, for some V-notched problems, unknown coefficients can be calculated numerically and also fracture parameters are determined.

A time delay estimation method using canonical correlation analysis and log-sum regularization (로그-합 규준화와 정준형 상관 분석을 이용한 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Lee, Seokjin;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative time delay between two or more received signals for the direct signal must be determined. Although the GCC (Generalized Cross-Correlation) method is the most popular technique, an approach based on CCA (Canonical Correlation Analysis) was also proposed for the TDE (Time Delay Estimation). In this paper, we propose a new adaptive algorithm based on CCA in order to utilized the sparsity in the eigenvector of CCA based time delay estimator. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue with log-sum regularization in order to utilize the sparsity in the eigenvector. We have performed simulations for several SNR(signal to noise ratio)s, showing that the new CCA based algorithm can estimate the time delays more accurately than the conventional CCA and GCC based TDE algorithms.

A Study on the Dyadic Sorting method for the Regularization in DT-MRI (Dyadic Sorting 방법을 이용한 DT-MRI Regularization에 관한 연구)

  • Kim, Tae-Hwan;Woo, Jong-Hyung;Lee, Hoon;Kim, Dong-Youn
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.30-39
    • /
    • 2010
  • Since Diffusion tensor from Diffusion Tensor Magnetic Resonance Imaging(DT-MRI) is so sensitive to noise, the principle eigenvector(PEV) calculated from Diffusion tensor could be erroneous. Tractography obtained from PEV could be deviated from the real fiber tract. Therefore regularization process is needed to eliminate noise. In this paper, to reduce noise in DT-MRI measurements, the Dyadic Sorting(DS) method as regularization of the eigenvalue and the eigenvector is applied in the tractography. To resort the eigenvalues and the eignevectors, the DS method uses the intervoxel overlap function which can measure the overlap between eigenvalue-eigenvector pairs in the $3\times3$ pixel. In this paper, we applied the DS method to the three-dimensional volume. We discuss the error analysis and numerical study to the synthetic and the experimental data. As a result, we have shown that the DS method is more efficient than the median filtering methods as much as 79.97%~83.64%, 85.62%~87.76% in AAE, AFA respectively for the corticospinal tract of the experimental data.

Non-redundant Precoding Based Blind Channel Estimation Scheme for OFDM Systems (OFDM 시스템에서 비중복 프리코딩을 이용한 미상 채널 추정 방법)

  • Seo, Bang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.450-457
    • /
    • 2012
  • For orthogonal frequency-division multiplexing (OFDM) systems, we propose a blind channel estimation scheme based on non-redundant precoding. In the proposed scheme, a modified covariance matrix is first obtained by dividing the covariance matrix of the received signal vector by the precoding matrix element-by-element. Then, the channel vector is estimated as an eigenvector corresponding to the largest eigenvalue of the modified covariance matrix. The eigenvector can be obtained by power method with low computational complexity instead of the complicated eigenvalue decomposition. We analytically derive a mean square error (MSE) of the proposed channel estimation scheme and show that the analysis result coincides well with the simulation result. Also, simulation results show that the proposed scheme has better MSE and bit error rate (BER) performance than conventional channel estimation schemes.

Prediction of Modified Structural Natural Frequencies and Modes using Interative Sensitivity Coefficient (감도계수 반복법을 이용한 구조물의 고유진동수 및 고유벡터 변화량 예측)

  • 이정윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.40-46
    • /
    • 2000
  • This study predicts the modified structural eigenvector and eigenvalue due to the change in the mass and stiffness of 2-dimesional continuous system by iterative calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of a crank shaft by modifing the mass and stiffness. The predicted dynamics characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness.

  • PDF

A REFINED SEMI-ANALYTIC DESIGN SENSITIVITIES BASED ON MODE DECOMPOSITION AND NEUMANN SERIES IN REDUCED SYSTEM (축소모델에서 강체모드 분리와 급수전개를 통한 준해석적 민감도 계산 방법)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.491-496
    • /
    • 2003
  • In sensitivity analysis, semi-analytical method(SAM) reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Recently such errors of SAM resulted by the finite difference scheme have been improved by the separation of rigid body mode. But the eigenvalue should be obtained first before the sensitivity analysis is performed and it takes much time in the case that large system is considered. In the present study, by constructing a reduced one from the original system, iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The sensitivity analysis is performed by the eigenvector acquired from the reduced system. The error of SAM caused by difference scheme is alleviated by Von Neumann series approximation.

  • PDF

Vibration of antisymmetric angle-ply laminated plates under higher order shear theory

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Karthik, K.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1281-1299
    • /
    • 2016
  • This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled differential equations are obtained in terms displacement and rotational functions. These displacement and rotational functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by comparative study.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

Finite Element Model Building Procedure of an External Mounting Pod for Structural Dynamic Characteristics Analysis of an Aircraft (항공기 구조 동특성 해석을 위한 외부 장착 포드의 유한요소모델 구축 절차)

  • Lee, Jong-Hak;Ryu, Gu-Hyun;Yang, Sung-Chul;Jung, Dae-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.72-77
    • /
    • 2011
  • In this study, the natural frequencies and mode shape of an external mounting pod were verified using the modal analysis and modal testing technique for a pod mounted on an aircraft. The procedure associated with the FEM building of an external mounted pod to predict the dynamic behavior of aircraft structures is described. The simplified FEM reflecting the results of the modal testing of a pod is built through the optimization, applied to the structural dynamic model of an Aircraft, used to verified the stability of vibration and flutter of an aircraft.

  • PDF

Eigenderivative Analysis of the Damped Structurure due to Modification of Mass and Stiffness (질량과 강성 변경 따른 감쇠구조물의 동특성 변화 해석)

  • Lee, Jung-Youn
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2005
  • This study predicts the modified eigenvectors and eigenvalues of the damped structure due to the change in the mass, damping and stiffness of structure by calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of the damped 3 degree of freedom system by modifing the mass, damping and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass, damping and stiffness.