• Title/Summary/Keyword: eigenvalue analysis

Search Result 795, Processing Time 0.038 seconds

Damage Estimation of Simple Beams using Damage Index : I. Theory and Numerical Analysis (손상지수를 이용한 단순보의 손상추정 I. 이론 및 수치 해석)

  • Kim, Hak Su;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.43-50
    • /
    • 1996
  • Damage estimation of bridge structures has recently received considerable attention in the light of maintenance and retrofitting of existing structures under service loads and after natural disasters. A method for the damage assessment of bridge structures using a damage index technique is presented. The damage index is formulated for the changes of modal properties due to the change of the stiffness. In order to verify the method which is presented, numerical analysis is conducted on simple beam models. Each FE model is subjected to different damage scenarios, i.e., locations and degrees of damage. Results of numerical analysis indicate that the proposed method is capable of detecting inflicted damages using the eigenvalue of only first mode.

  • PDF

Nonlinear Oscillation Characteristics in Combination Resonance Region Considering Damping Effects (조합공진 영역에서 감쇠의 영향을 고려한 비선형 진동 응답 특성)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.849-855
    • /
    • 2010
  • Damping may change the response characteristics of nonlinear oscillations due to the parametric excitation of a thin cantilever beam. When the natural frequencies of the first bending and torsional modes are of the same order of magnitude, we can observe the one-to-one combination resonance in the perturbation analysis depending on the characteristic parameters. The nonlinear behavior about the combination resonance reveals a chaotic motion depending on the natural frequencies and damping ratio. We can analyze the chaotic dynamics by using the eigenvalue analysis of the perturbed components. In this paper, we derived the equations for autonomous system and solved them to obtain the characteristic equation. The stability analysis was carried out by examining the eigenvalues. Numerical integration gave the physical behavior of each mode for given parameters.

Thermo-elastic Creep and Frequency Optimization by Using Feasible Direction Method (Feasible Direction Method를 사용한 열.탄성.크리프 및 진동수에 대한 최적화)

  • Jo, Hui-Geun;Park, Yeong-Won;Gang, Yeon-Sik;Lee, Gyeong-Don
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.857-865
    • /
    • 2001
  • In finite element analysis, engineering optimizations are divided two major parts that are topology and structural optimization. Until these days most structural optimizations usually concentrate on single disciplinary optimization. Therefore numerical analysis and methodology which can optimize thermo-elastic creep and frequency phenomena are not suggested. In this paper finite element analysis methodology and algorithm of thermo -elastic creep and frequency optimizations are suggested and corroborate the efficiency of suggested new numerical methodology and algorithm by solving example problem.

Eigenderivative Analysis by Modification of Design Parameter in the Proportional Damping System (설계파라미터 변경에 의한 비례 감쇠구조물의 동특성 변화 해석)

  • Lee, Jung-Woo;Oh, Jae-Eung;Lee, Jung-Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.470-478
    • /
    • 2006
  • An efficient method for change of eigenvectors and eigenvalues due to the modifying proportional damping structure using sensitivity coefficients is presented. Sensitivity coefficients are determined by iteration with eigenvalue and eigenvectors before modification of system. The proposed method is applied to examples of 3 degrees of freedom system and plate by modifying mass and stiffness. The predicted change of eigenvectors and eigenvalues are in a good agreement with these from the structural re-analysis after modification of mass and stiffness.

Viscoelastic Damping Treatment Analysis and Aeroelasticity for Vibration Reductions of a Hingeless Composite Helicopter Rotor System (무힌지 복합재 헬리콥터 로터 시스템의 진동 저감을 위한 점탄성 감쇠처리 해석 및 공탄성 연구)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.6-14
    • /
    • 2007
  • In this research, vibration reduction and aeroelastic stability of a composite hingeless rotor hub flexure with viscoelastic constrained layer damping treatment(CLDT) were investigated. The composite flexures with viscoelastic CLDT were applied to hingeless rotor system to improve the in-plane stability of the lead-lag motion causing resonance. The modal test was performed and dynamic properties(natural frequency and loss factor) were acquired. Also, complex eigenvalue analysis(SOLlO7) in the NASTRAN structural analysis module was performed and compared with results of the modal test. To insure aeroelastic stability, damping ratio analyses of the hingeless rotor system with CLDT were accomplished at hovering condition due to collective pitch angle changes. Satisfactory results of increasing structural damping and stability were obtained.

  • PDF

The Analysis of Eigenvalue Problems of Curved Beam Using Curvature-Based Curved Beam Elements (곡률 곡선보요소에 의한 곡선보의 고유치문제 해석)

  • 양승용;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3020-3027
    • /
    • 1993
  • Curved beam element has received attention because of its own usefulness and its bearing on general curved elements like shells. In conventional curved beam elements stiffness matrix is overestimated and eigensolutions are poor. To avoid this phenomenon it is necessary to use a large number of elements and, as a result, the total number of degrees of freedom is increased. In this paper the two-noded, with three degrees of freedom at each node, in-plane curvature-based curbed beam element is employed in eigen-analysis of curved beam. It is shown that the curvature-based beam element is very efficient in vibration analysis and also that it is applicable to both thin and thick curved beams.

Analysis and Reconstruction of the 2-D Cylinder Wake Flow Using POD (적합직교분해를 이용한 2차원 실린더 후류 유동장 분석 및 재구성)

  • Rhee, Hui-Nam;Kim, Gi-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.164-169
    • /
    • 2010
  • Proper Orthogonal Decomposition (POD) is applied to the analysis of 2-dimensional cylinder wake flow. Time histories of flow variables were obtained by the incompressible CFD analysis. By using the method of snapshots the correlation matrix was constructed, and then eigenvalues, POD modes and time coefficients were calculated. Finally the flow field was reconstructed by using a few of the lower POD modes, and compared to the original ones.

Modified Airy Function Method Applied to Optical Waveguides and Quantum Tunneling: A Critical Analysis

  • Lee, Ki-Young;Kim, Chul Han;Park, Dongwook;Kim, Chang-Min
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.188-198
    • /
    • 2015
  • The validity of applying the Modified Airy Function (MAF) method to the problems of graded-index optical waveguides and graded potential barrier analysis was critically examined. In the former case, the method yielded very accurate results from the derived eigenvalue equations. In the latter case, however, the same method produced results that deviated significantly from exact numerical results for barriers with a smooth peak. The causes of the discrepancies were investigated in detail.

A study of the Snapping investigations of Seoul Southwest Baseball Dome (서울 서남권 돔 야구장의 Snapping 검토에 관한 연구)

  • Kim, Seung-Deog;Kim, Nam-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.133-140
    • /
    • 2010
  • This paper studies on the instability behaviour of the Seoul southwest baseball dome. The nonlinear Snapping phenomenon of the structure is investigated about the load mode by the design load of analysis structure and these combined loads. The initial imperfection obtains the buckling mode through the eigenvalue analysis of the tangential stiffness matrix and uses this for the nonlinear analysis. However, the buckling of members or the local buckling, and etc don't consider in the research range of this research task. Also it is limited the overall buckling phenomenon.

  • PDF

On the fundamental period of infilled RC frame buildings

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Cavaleri, Liborio;Sarhosis, Vasilis;Athanasopoulou, Adamantia
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1175-1200
    • /
    • 2015
  • This paper investigates the fundamental period of vibration of RC buildings by means of finite element macro-modelling and modal eigenvalue analysis. As a base study, a number of 14-storey RC buildings have been considered "according to code designed" and "according to code non-designed". Several parameters have been studied including the number of spans; the span length in the direction of motion; the stiffness of the infills; the percentage openings of the infills and; the location of the soft storeys. The computed values of the fundamental period are compared against those obtained from seismic code and equations proposed by various researchers in the literature. From the analysis of the results it has been found that the span length, the stiffness of the infill wall panels and the location of the soft storeys are crucial parameters influencing the fundamental period of RC buildings.