• Title/Summary/Keyword: eigenvalue analysis

Search Result 794, Processing Time 0.027 seconds

Computational Study of Automotive Drum Brake Squeal (자동차 드럼 브레이크의 스퀼 전산 해석 연구)

  • Jung, Taeksu;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.16-22
    • /
    • 2014
  • Automotive NVH on brake operation is mainly caused by a coupling action of vehicle speed and inter parts friction and its frequency occurs over a broad band of 0.1 kHz~10 kHz. Especially, squeal noise, being a self-excited vibration generated by friction force between drum and lining, occurs over 1 kHz and consequently dynamic instability is induced when friction energy is applied to a brake vibration system. The squeal strongly depends on nonlinear properties influenced by the material of lining, velocity of vehicle, and the dynamic properties of a brake system. The dynamic properties are considered as a main influential design factor to squeal noise, however the analysis of the properties are rarely facilitated due to arbitrariness of shape by wearing down. In this paper, we research generating tendency of squeal noise through complex eigenvalue analysis, tracking drum brake's unstable modes in accordance with the wear shape of drum and lining such as tapered and bellmouth shape, and analyze computed unstable modes by variable shapes.

Analysis of Stability of PV System using the Eigenvalue according to the Frequency Variation and Requirements of Frequency Protection

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.480-485
    • /
    • 2012
  • Use of photovoltaic (PV) power generation system will become more widespread in the future due to anticipated cost reduction in PV technology. As the capacity of PV systems increases, a variation of power system frequency may prevent the stable output of PV system. However, the standard for the frequency protection of distributed generation in Korea Electric Power Corporation (KEPCO)'s rule does not include the setting of frequency protection. Therefore, this paper analyzes the correlation between the frequency protection requirements and the stability of grid-connected PV system for the adjustable operating setting of frequency protection. The distribution system interconnected with 3 MW PV system is modeled by Matlab/Simulink. The various values of frequency are simulated. For studied cases, the stability of PV system is analyzed. It is concluded that the setting of frequency protection is necessary to consider the stability of PV system.

Two-dimensional Unsteady Thermal Stresses in a partially heated infinite FGM Plate (부분 가열된 무한 경사기능재료 판의 2차원 비정상 열응력)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • A Green's function approach based on the laminate theory is adopted for solving the two-dimensional unsteady temperature field and the associated thermal stresses in an infinite plate made of functionally graded material (FGM). All material properties are assumed to depend only on the coordinate x (perpendicular to the surface). The unsteady heat conduction equation is formulated into an eigenvalue problem by making use of the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the two-dimensional unsteady temperature. The associated thermoelastic field is analyzed by making use of the thermal stress function. Numerical analysis for a FGM plate is carried out and effects of material properties on unsteady thermoelastic behaviors are discussed.

  • PDF

Optimal Stacking Sequence Design of Laminated Composites under Buckling Loads (좌굴하중하에서 복합적층판의 최적 적층 설계)

  • 윤성진;김관영;황운봉;하성규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.107-121
    • /
    • 1996
  • An optimization procedure is proposed to determine the optimal stacking sequence on the buckling of laminated composite plates with midplane symmetry under various loading conditions. Classical lamination theory is used for the determination of the critical buckling load of simply supported angle-ply laminates. Analysis is performed by the Galerkin method and Rayleigh-Ritz method. The approximate solution of buckling is replaced by the algorithms that produce generalized eigenvalue problem. Direct search technique is employed to solve the optimization problem effectively. A series of computations is carried out for plates having different aspect ratios, different load ratios and different number of lay-ups.

  • PDF

Global Optimization of Composite Structures Using Triangular Patch Algorithm (삼각 패치 알고리듬을 이용한 복합 재료 구조물의 전체 최적화)

  • O, Seung-Hwan;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.671-684
    • /
    • 2001
  • Several design problems of composite structures are studied via a global optimizer based on attraction regions. MSC/NASTRAN is adopted for static and eigenvalue analysis. The method of modified feasible direction in DOT is used for local optimization. Through the review of global optimization algorithms, the triangular patch algorithm is selected because the algorithm is known to be efficient, robust and powerful for general nonlinear optimization problems. For general applicability, various mechanical properties are considered as design objectives; strain energy, eigenvalue, weight, displacement, and buckling load. In all cases considered, the triangular patch algorithm results in a lot of optimum points and useful design patterns, that are not easy by local algorithms or conventional global algorithms can be determined.

Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse

  • Abbas, Ibrahim A.;Alzahrani, Faris S.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.791-803
    • /
    • 2016
  • In this article, the problem of a two-dimensional thermoelastic half-space are studied using mathematical methods under the purview of the generalized thermoelastic theory with one relaxation time is studied. The surface of the half-space is taken to be thermally insulated and traction free. Accordingly, the variations of physical quantities due to by laser pulse given by the heat input. The nonhomogeneous governing equations have been written in the form of a vector-matrix differential equation, which is then solved by the eigenvalue approach. The analytical solutions are obtained for the temperature, the components of displacement and stresses. The resulting quantities are depicted graphically for different values of thermal relaxation time. The result provides a motivation to investigate the effect of the thermal relaxation time on the physical quantities.

Frequency Optimization Using by Feasible Direction Method (유용방향법에 의한 고유진동수 최적화)

  • 조희근;박영원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.410-415
    • /
    • 2000
  • In this paper feasible direction method which is one of the optimization method is adopted to natural frequency optimization. In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleight-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculated the optimal thickness and the thickness ratio of each element of 2-D plane element through the parallel algorithm method which satisfy the design constraint of natural frequency.

  • PDF

Extraction of eigenvalues of acoustic cavities with a mixed boundary (혼합 경계를 가진 임의 형상 음향 공동의 고정밀도 고유치 추출 기법)

  • Kang, S.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.404-406
    • /
    • 2014
  • The NDIF method is developed for eigenvalue analysis of arbitrarily shaped two-dimensional acoustic cavity with a mixed boundary, which consists of rigid-wall and open boundaries. The NDIF method, which was developed by the author in 2000, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods (FEM and BEM). The validity of the proposed method is shown in a case study, which indicate that eigenvalues obtained by the proposed method are more accurate compared to the exact method or FEM(ANSYS).

  • PDF

Small Small Signal Stability Anslysis by AMEP for Controller Parameter (제어기정수에 대한 AMEP와 대규모 전력계통에 미소신호안정도 해석)

  • Shim, K.S.;Song, S.G.;Nam, H.K.;Kim, Y.G.;Moon, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.112-115
    • /
    • 2001
  • Eigenvalue perturbation theory of augmented system matrix(AMEP) is a useful tool in the analysis and design of large scale power systems. This paper describes the application results of AMEP algorithm with respect to all controller parameter of KEPCO systems. AMEP for interarea and local mode can be used for turning controller parameter, and verifying system data and linear model of controller.

  • PDF

Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method

  • Wu, L.H.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.267-288
    • /
    • 2012
  • Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic edge supports is presented by using the powerful pb-2 Ritz method and Reddy's third order shear deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken to be the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. A lot of numerical results for reasonable natural frequency parameters of quadrilateral plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.