• Title/Summary/Keyword: eigensensitivity

Search Result 5, Processing Time 0.017 seconds

Calculation of eigenvalue and eigenvector derivatives with the improved Kron's substructuring method

  • Xia, Yong;Weng, Shun;Xu, You-Lin;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.37-55
    • /
    • 2010
  • For large-scale structures, the calculation of the eigensolution and the eigensensitivity is usually very time-consuming. This paper develops the Kron's substructuring method to compute the first-order derivatives of the eigenvalues and eigenvectors with respect to the structural parameters. The global structure is divided into several substructures. The eigensensitivity of the substructures are calculated via the conventional manner, and then assembled into the eigensensitivity of the global structure by performing some constraints on the derivative matrices of the substructures. With the proposed substructuring method, the eigenvalue and eigenvector derivatives with respect to an elemental parameter are computed within the substructure solely which contains the element, while the derivative matrices of all other substructures with respect to the parameter are zero. Consequently this can reduce the computation cost significantly. The proposed substructuring method is applied to the GARTEUR AG-11 frame and a highway bridge, which is proved to be computationally efficient and accurate for calculation of the eigensensitivity. The influence of the master modes and the division formations are also discussed.

FE-model Update for System Identification of PSC Girde (민감도 분석을 통한 프리스트레스 콘크리트 거더의 유한요소모델 개선)

  • Ho, Duc-Duy;Lee, So-Young;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.425-428
    • /
    • 2009
  • This paper presents a sensitivity-based finite element (FE)-model update procedure for prestressed concrete (PSC) girder bridge model using vibration test results. Firstly, the stiffness parameters of the structure such as flexural rigidity of concrete and flexural rigidity of tendon are chosen as updating parameters. Next, the numerical frequencies of first two bending modes are calculated using a three-dimensional FE model which is established for the PSC girder. Then, the corresponding experimental frequencies which are obtained from forced vibration tests are selected. In order to perform the model update, the eigensensitivity-based method is employed. Finally, the effect of prestress-loss on the stiffness parameters is evaluated.

  • PDF

Eigensensitivity Synthesis and Its Applications (동특성 민감도 합성법과 그 응용)

  • Joo-Ho Heo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.140-149
    • /
    • 1992
  • The new method, termed the substructural eigensensitivity synthesis method, utilizes the computational merits of the component mode synthesis technique and of sensitivity analysis for the design sensitivities of the dynamic characteristics of substructurally combined structures. It is shown that the eigensensitivities of the entire structure can be obtained by synthesizing the substructural eigensolution and the sensitivities of the eigensolution for the design variables of the modifiable substructure. The sensitivities of the eigenvalues and eigenvectors obtained by the new method are compared to exact eigensolutions in terms of accuracy and computational efficiency. The small errors in eigensensitivity due to the truncation of higher modes remain within a manageable and permissible range for further analysis. The advantage of the newly proposed method as compared to the direct application of sensitivity analysis of the whole structure is demonstrated through examples.

  • PDF

Updating Algorithms of Finite Element Model Using Singular Value Decomposition and Eigenanalysis (특이값 분해와 고유치해석을 이용한 유한요소모델의 개선)

  • 김홍준;박영필
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.163-173
    • /
    • 1999
  • Precise and reasonable modelling is necessary and indispensable to the analysis of dynamic characteristics of mechanical structures. Also. the effective prediction of the change of modal properties due to the variation of design parameters is required especially for the application of finite element method to the structural dynamics problems. To meet those necessity and requirement, three model updating algorithms are proposed for finite element methods. Those algorithms are based on sensitivity analysis of the modal data obtained from experimental modal analysis(EMA) and analytical modal analysis(AMA). The adapted sensitivity analysis methods of the algorithms are 1)eigensensitivity(EGNS) method. 2)frequency response function sensitivity(FRFS) method. 3)sensitivity based element-by-element method (SBEEM), Singular value decomposition(SVD) is used for performing eigenanalysis and parameter estimation in the updating process. Those algorithms are applied to finite element of a plate and the updating capability of each algorithm is compared in terms of accuracy. reliability and stability of the updating process. It is shown that the model updating method using frequency response function is superior to the other methods in view of various updating capabilities.

  • PDF

Updating of Finite Element Model and Joint Identification with Frequency Response Function (주파수응답함수를 이용한 유한요소모델의 개선 및 결합부 동정)

  • 서상훈;지태한;박영필
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • Despite of the development in the finite element method, it is difficult to get the finite element model describing the dynamic characteristics of the complex structure exactly. Therefore a number of different methods have been developed in order to update the finite element model of a structure using vibration test data. This paper outlines the basic formulation for the frequency response function based updating method. One important advantage of this method is that the intermediate step of performing an eigensolution extraction is unnecessary. Using simulated experimental data, studies are conducted in the case of 10 DOF discrete system. The solution of noisy and incomplete experimental data is discussed. True measured frequency response function data are used for updating the finite element model of a beam and a plate. Its applicability to the joint identification is also considered.

  • PDF