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Abstract

The new method, termed the substructural eigensensitivity synthesis method, utilizes the computational
merits of the component mode synthesis technique and of sensitivity analysis for the design sensitivities
of the dynamic characteristics of substructurally combined structures. It is shown that the eigensensitivities
of the entire structure can be obtained by synthesizing the substructural eigensolution and the sensitivities
of the eigensolution for the design variables of the modifiable substructure.

The sensitivities of the eigenvalues and eigenvectors obtained by the new method are compared to
exact eigensolutions in terms of accuracy and computational efficiency. The small errors in eigensensitivity
due to the truncation of higher modes remain within a manageable and permissible range for further
analysis. The advantage of the newly proposed method as compared to the direct application of sensitivity

analysis of the whole structure is demonstrated through examples.
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1. Introduction

In recent years, the field of structural or mechanical
design modification or optimization has grown and gained
broad popularity. The substructure synthesis method has
been developed to alleviate the high computational cost
and the difficulty in re-designing the model with partial
modifications. As a main stream of substructure synthesis
method, the component mode synthesis (CMS) methods
were developed by adopting the constrained modes as
the substructural vibration modesf[1].

On the other hand, among the various techniques for
efficient re-design of large complex structures, a more
rigorous approach to predict the system’s dynamic chara-
cteristics with respect to design modifications emerged
in the form of sensitivity analysis{2,3]. After a famous
paper by Fox and Kapoor[4], Neison[5] developed better
approach which expresses the eigensensitivity in terms
of corresponding eigenvalue and the associated eigenvec-
tor that is to be differentiated.

Even though there is some feasibility in implanting
CMS into sensitivity analysis for optimum dynamic struc-
tural design, there are only a few paper in this field such
as the work of Hasselman and Hart[6], and the Huang
and Huang's paper[ 7). However, those works result in
a less efficient and accurate method than Nelson's me-
thod. For this reason, the development of a scheme to
efficiently calculate the accurate eigensensitivity of a stru-
ctural system which can be used in optimal design by
using the CMS method would be the main scope in the
subsequent sections of this paper. The second objective
is to establish a design scheme for structural modifica-
tions taking advantage of the substructurally synthesized

sensitivities.

2. CMS, Sensitivity and the Combination

2.1 Formulation of the CMS Method
For simple derivation, a structure with only two subst-

ructures, consisting of the unchanged original system Sub
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0 and a modifiable appendant system Subl, will be consi-
dered. Assuming that damping is negligible, after partitio-
ning them into boundary(junction) degrees of freedom
and interior degrees of freedom with superscripts b and
i respectively, the governing equation can be written

as :

] 07 fw) , [ LK™ [ -
Ll {ﬁ }]+ (B [k“]L{ﬁ‘ }]‘ fof "
1

where, subscript J(0 or 1) stands for substructures Sub].

The equation for free vibrations of the entire structure

gives 3
M) {% + (K1{x} = {of @
where
[m*], + [m™®3 0. O
M) = 0 [m'], 0 )
0 0 [mile

(k] + (k3o [k, [k

[K]= [k Ixily o Y]
[k®Jo 0 [k

= fubul, wb}’ (5)

Introducing the fixed interface normal modes Lo™],
the final eigensystem equation for the total structural
system with boundary degrees of freedom {u’f and gene-
ralized coordinates for SubJ, {pl;, can be obtained for the

case of a lumped mass matrix as follows(89] :

[[K]~AMI] X} =lo} (6)
where

_ (w1 + [mtT, L]y (o

M1 = m®], [m'), 0 (N
{m®1, 0 [mi

[k, + (k™) 0 0

mz[ B G ) ] (®)

0 o [kl
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X! = {u"pipe |’ (9

and the relation between July and the generalized coordina-

tes iph is expressed with the constraint mode [¢*]; !

lo*); = — (k'] ' [k"], (10)
ooy 1) o p _

iy = {3 }J = [[(DiC]JECP'N]J]{L;J }[v J=01 (1D
[y = Cm®™]; + Co*1Y [m™]; Lo']; (12)
fm™1y = [m™]) = (¢*]f [Ty L™ (13)
[m') = [o™], [m"], [o™], ’ (14)
Lk ], = [k™]; + [k"]) Loy (15)
(kD) = Lo™]) [k Lo, (16)

When [¢™]; is a mass-normalized fixed interface mode
of Sub], then :

[m']; = [1I : unit matrix an
[k, = (X (18)

where [A']} is the diagonalized eigenvalue matrix for the
interior part with a fixed boundary. The total number
of DOF of the final eigensystem equation, Eq.6, is deter-
mined by the number of chosen normal modes for the

interior part and the number of boundary DOF.

2.2 Synthesis of Eigensensitivity

With respect to the design variable, v, the sensitivity
equation of the above eigensystem for the case of distinct
eigenvalues can be expressed by following Nelson’s me-
thod[ 5] as :

N _ oyt (0K - oIMIN o)
F 4 (—av A ) Xk (19)
My aiXh (20)
ov (RS i i
or

. Va Xa (2D
X = {0 + G Xk}

ov Vi )i Xy )i

where the location k is selected such that the kth element

of 1X}; has the largest absolute value. The partitioned

kA

complementary vectors with the pivotal Jocation k, subve-

ctors Vi and Vi, will be obtained from the following equa-

tions -
[[K — MM 0 (K= M as MVA FA}
__0. 1 0 _ _ Vit =40 (22)
[(K—AMlu 0 [K=AMIg JiVy)  (Fgli
where
Fl= (KD - Acwan 85
_ Kl oA - _-oM] | o
(——av S M-SR @9
o= -k - L™y
. 2 ov

The number of DOF for the eigensystem equation, Eq.6,
and for the sensitivity equations, Eq. 19-20, can be drasti-
cally reduced by selecting some normal modes as basis
vectors. A reasonable condensation of the system matrix
size by CMS will result in significant computational savi-
ngs during sensitivity synthesis. For the iterative design
modification process, extra savings in computational steps
can be expected by virtue of the simple recalculation

of the eigensolutions only for the modifiable substructure.

To obtain the eigensensitivity, the rate of change of
the stiffness and mass matrix of the combined structure
should be calculated first[10].

alk™],
-———av 0 0
ov v
0 0 Q
(25)
olm*l olwl
ov ov
oKl | olm™T | 0
v ov
0 0 0,
(26)

Transactions of SNAK, Vol. 29, No. 2, May 1992



where
Y _ okl ol
i e )
bi 1
+ [QSEJLEQ.CIJ + (617 alk'l Rl 4],
27
ol _olal diag( P Ok
ov ov ov ov
Lo
Ty ) (28)
ALy _ olmh  raleIT oo
P - +[ = Im hlo*],]
a[ iC]T . . T
+ [%—‘[m"]x[@qx}
+[¢‘cn"[‘“]‘ Lo<l, (29)

olm* _ gle“Il

[T LoN], + [o*] TQ(%E”_]L.[Q).N]]

ov av
_ s
+ (6T TLm"], Qa_:JL (30
The rate of change of the constraint mode is :
el o ralkih k™,
EY D~ ku iC + ==
- (k] }[av [o) + £ 1 G

where the mass-normalized mode [¢™], should be in

place.

The number of multiplications for the eigensensitivities

as expressed by Eq. 19-24 can be also drastically

oK) olM]
and —/—.
av ov

reduced because of the sparsity of

The benefits from the use of the substructural eigensen-

sitivity synthesis method would be :

* Reduction in calculation time and in the size of com-
puter memory for sensitivity analysis.
+ Easy design modification of existing dynamic structu-

res by simply modifying the attached substructure
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with the use of the eigensensitivities for the attachied

substructure.

3. Analysis with Numerical Example

The validity, accuracy and computational efficiency of
the proposed method have been evaluated for different

variants of a simple truss structure.

3.1 Investigation of Numerical Efficiency

For comparison purpose the computational load in te-
rms of the number of multiplications for the full model
sensitivity analysis and the substructural eigensensitivity
synthesis were considered and tabulated in Table 1

A 100 DOF structural system consisting of two equally
sized substructures and a junction part with 10 DOF is
considered as an example. With the bhasic assumption
of 3n® computing steps for pure eigenanalysis, the number
of computing steps is shown in the numerical example
of Table 1. It can be noticed that when 10 fundamental
modes out of the 45 normal modes for each substructure
are selected, the number of computing steps for the pro-
posed method would be reduced to 1/4 or even lower
to about 1/20. For sensitivity analysis, when a full basis
of 45 modes for each substructure is used, the number
of computation steps is about 1.05x10% while when 10
modes are used in conjunction with the previously obtai-
ned modal data for both substructures, the number of
computations reduces to about 1.7x10° steps : the calcula-
tions by using the proposed method are faster by a factor
of about 6 for each design variable. Furthermore, it shows
that the proposed method is more efficient than the finite
difference method applied to two CMS results with a
perturbed substructure (0.73 vs. 2x0.56=1.12). When
considering the enormous computing time needed for
the dynamic analysis of large structures, the saving in
computing cost with the proposed method reveals its effi-

ciency.

3.2 Scheme of the Computer Program

A Fortran program has been written to evaluate the
feasibility of the substructural eigensensitivity synthesis
method on a structural system consisting of two substruc-
tures. A brief description of the major stages of the com-

puter program is shown in Fig.l.
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Table 1 Number of computing operation for one design element with a numerical example

Analysis Type Present Proposal
Conventional CMS
Sub0 : 2F(M) + E(M)
e ° Subl : 2F(N) + E(N)
EIGENANALYSIS F(L) + E(L) SYN ,'2 M+ N + KM + N
~ 413 + 31 '
+E(L)
Nelson’s Sub. Sens. Synthesis
SENSITIVITY P) Sub0: O
ANALYSIS bil: G(N
G(L) may L + 50 | oL G
SYN ! 2KI(N + n) + G(D

OEX =~ 3%
OFx) ~ 3+ 3¢

number of multiplication steps for pure E-analysis.
auxiliary steps including steps for matrix inversion
® G(x) = F(x) + 2% steps for E-sensitivity analysis

Sub0 Subl Junction Total
Number of DOF M N K L=M+N+K
Number of Bases m n K I=m+n+K

Numerical Example
for 1 design variable

L=100(M =N = 45, K = 10)
1=30(m = n =10, K= 10

Cased -

# of steps Conven- Substructural Sensitivity Syn.
(X107%) tional Casel Case2 Case3 Case4
E-ANALYSIS 4.03 1.03 0.56 0.09 301
@NSITWITY 1.05 0.17 0.17 0.17 1.33
Total 5.08 1.20 0.73 0.26 4.34
Casel : Without using the previously obtained modal data
Case2 : Using substructural modal data for one substructure

Case3 . Using substructural modal data for both substructures
Same as Case3 but using full basis(l = 100 = L)

3.3 Application to the Vibration of Truss Structure

A mass-spring model which consists of two truss subst-
ructures is introduced as shown in Fig. 2 along with the
corresponding element stiffness and mass matrices. Ba-
sed on the numerical model, first, a full mode] eigensys-
tem analysis was carried out with a total number of DOF
equal to 8, followed by a sensitivity analysis for the five
elementwise cross sectional areas.

Next, based on the proposed theory, the effect of the

pumber of chosen modes on the accuracy and efficiency

was examined for two cases :

(1) Full basis synthesis : By using all fixed interface no-
rmal mode vectors as basis vectors, ie., 3 interior
modes for SUBO and 3 interior modes for SUB1 with
2 junction DOF.

(2) Reduced basis synthesis : By selecting the lowest
2 modes for each substructure as basis vectors.

The mode shapes and sensitivities of the shapes with
corresponding eigenvalues for both the case of full model
and of a reduced basis vector (2-2 modes) are shown

Transactions of SNAK, Vol. 29, No. 2, May 1992
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READ INPUT DATA
for each substructure

ML, Ko ] M), [

Substructural
Data

SUBSTRUCTURAL EIGENANALYSIS ,

for each substructure Data

haber | el

SUBSTRUCTURAL
SENSITIVITY ANALYSIS
only for the moditiable

MODAL SYNTHESIS
(by CMS)
using both sub-

File
Sub-modal
Sensitivity

structural modal data substructure
[ yyie
P [V T
dvi dv; dv;
! File
COMPONENT SENSITIVITY SYNTHESIS | Synthesized
o @ Sensitivily
dvj y dv;
CHECK PROGRAM for confirmation
dh dd
M
Fig. 1 Schematic flow chart of the substructural
eigen-sensitivity synthesis method
ﬁ TOTAL DOF = 8
A4 7 8

« :connecting nodes
0 ®6lee L 06
T | ————— S =

\ ® O

SuBo SuB1
AMEMEWENEIE | NSRRI
3 s € 7 8

- o[ ]

[Me] = Me [; ?

(p=10)
Etement] Area {Length |Element | Eiement dKe dMe
Number{ Ae Le |spring Ke |mass Me dAe dAe_ |
1] 20 1.0 20. 1.0
2120 20 10. 2.0
sSUB0| 31 1.0 1.0 10. 05
%4110 1.0 20. 05
5] 1.0 0.5 20. 0.25 . .
1] to0 20 5. 1.0 5. 1.0
2] 10 0.5 20. 0.25 20. 0.25
SuUBt1]3| 2.0 2.0 10. 20 5. 1.0
p4' 1.0 1.0 10. 0.5 10. 0.5
§ . . . . 15. 0.37
# . Young's Modulus of slement 4 is 20.0, while the others are 10.0.
+ :Elament §' Is selocted only to show the effect of change in the original
siructural slements 4 and 5 which have connecting nodes.

Fig. 2 Truss Model and equivalent system
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TOTAL FULL ANALYSIS (FULL DOF = B)
2-2 REOQUCED BASIS SYNTHESIS (DOF = 6)

UPPER NUMBERS & —
LOWER NUMBERS & - -

MODE 1 2 3 4
EIGEN- .3073 3.1044 6.243 11.1434
VALUE .3075 3.1086 6.2965 11.1478
i 5T 5

EIGEN-

EIGEN PR 7 | a

MoDE) | | - .

~-.0247 L1921 -. 4446

@ 1 -.0247 111913 1 -8t
E for

o JAREAL] L - — o -_,:]L 3
i} — N =
B -1 L}‘ ~ S/\“ 1
[y} - -
o A »gigg 1 fﬁée 1 ‘:SSé% 1 }g.zz
Ll for

& |AREA2 ~7~ P AN
w -1 - -1 -1

3 et VN PPRE -2 IR = I BNl i L
; for

G |sRena — > IR VAN N
o |- -1 -1 -1

« P E TN j L8
o for .

> |AREA4 -

o

> - - - -

-

= ] PR s (3383 51893
) for

5 AREAS N 7{__3 _ -

n W VAN,

-.25 - .25 - .25 - .25

Fig. 3 Eigenvalue, eigenvector and the eigensen-
sitivities for full model analysis and 2-2

reduced basis synthesis

in Fig. 3(the result for full basis synthesis is exactly the
same as for the full model analysis). The results show
only slight differences which were expected due to the
adoption of the CMS technique to the sensitivity synthe-
sis.
3.3.1 Error Analysis

To ascertain the accuracy of the method, the deviation
of the substructurally synthesized eigensolutions and se-
nsitivities from those of the full analysis was obtained
and expressed in terms of the relative error and percent
of absolute difference(PAD). The relative error is gene-

rally defined as :

=

- (32)

Relative Error =

where, A° is the exact eigenvalue and A? is the analytically
(or by any other means) obtained eigenvalue.

Similarly, by denoting the exact normalized mode
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shape by {0% and the analytically obtained corresponding
normalized mode by {0}, the mode shape difference vec-
tor {0% can be expressed by jth nodal difference ¢ -
¢f = of — o, j=12-n (33)
where n is the number of DOF for the mode shape, and

subsequently the PAD can be defined as :

(): Lo )/n _Z"I\cn}'\

PAD = X 100 = L X 100 (34)
(Z 16/ ® o
j=1 jl

By using the above concept of relative error and PAD,
the resuits of substructurally synthesized eigensolutions
and their sensitivities were examined and tabulated in
Table 2 only for the reduced basis (2-2 modes) case.

The results show inherent modal turncation effects
[11], i.e., the smaller the number of selected basis modes
the larger the errors in the eigensolution. However, the
sensitivities obtained by the proposed method demonst-
rate a very good accuracy and the errors resemble the
results of eigensolution analysis with the CMS technique.
From the point of view of efficiency, the analysis revealed
that if the number of chosen modes is small, less calcula-
tion time is required as shown Table 3. The actual calcu-
lation time is obtained by running the program on an
IBM AT compatible computer.

3.3.2 Larger Truss Model

As another example, a larger truss structure with 149
DOF has been analyzed. The results obtained on a VAX
11/785 computer are presented in Table 4. The eigenso-
lutions and their sensitivities are obtained by full model

analysis and both full and reduced basis synthesis but

Table 2 Error analysis with reduced basis(2-2

modes)
Relative Error
ERRORS PAD for Eigenvector (%)
from the Result |0 Eigenvalue (%)
Mode Number Mode Number

of Full Analysis

TT s T3 a1 2T 313
E-analysis (CMS) 007 014|088 004]| 0.14{ 096 | 3.40] 1.69
Sensitivities |1] 0.00| -42 | 8.19] 1.78| 0.43| 0.7 | 805 | 9.08

for o| 0.00]-1.48] 639 -878| 1.35| 355 |18.1214.30
varisbles || ool o5l 216]-324) 051] 032 557 | 1015
{E-sensitivity {4] 0.00] -56 296 |-341| 067 1.241 4391 497
Synthesis) |s| 000|090} 875} 022} 0.05| 1.78] 212| 3.01

Table 3 Comparison of calculation times

o Sw—':— vqo_ Ere'_/ioui submodal data
ANALYSIS OF [t With previous submodal data
TYPE subo| sup1| CPU Time t % time for
{sec) Fult Analysis
3 3 586 15
555 109
Substructural 3 4.13 81
o 2
Elgensensitivity 3.79 74
Synthesis 2 3 4.18 82
(Junction DOF:2) 3.84 75
2.90 57
2
2 257 50
Fult Sensitivity Tota!
Analysis 8 5.10 100

t: CPU time was obtained on an IBM AT compatible computer

Table 4 Eigenvalue sensitivities and the elapsed

time for the first 4 modes for each ana-

lysis type
Design| Number of Calcuiation
Test Chosen Modes Eigenvalus Sensitivily Time (sec)
024 ] Sub0 | Subi | Modal | Moda2 | Moda3 | Modad | F-Anal
Full Analysls | .0028 | -.0125 | .0525 | -.0398 | 162.10| 61.63
Truss Modal| 99 {all) 49 -0029 | -.0122 1 .0525 | -.0393 | 173.24] 76.25
99 15 -.0028 | -.0125 | .0525 | -.0397 1 82.61 | 33.60
SERL_REE:] s |-oo26]-0125| .0525 | -0388 | €4.79 | 23.74
N 25 49 -002@ | -.0125 | .0525 | -.0398 | 30.69 | 23.63
1 (A=2.0)| 25 15 -0028 | -.0125 | .0525 | -.0397 | 12.78 | 8.60
2 25 5 -0028 | -.0125| .0525 | -.0388 | 10.20 | 2.75
5 49 -0028 | -.0126| 0525 | -.0406 | 19.57 | 18.73
3 5 15 -0028 | -0125 | 0525 | -.0405| B.81 5.04
5 5 - -0128 -03971 BEE | 1A
] ?g Full Anatysis | -.0026 | -0142 | .0516 | -.0252 61.09
] &
. 99 (al) 49 -0027 1 -.0138 | .0516 | -.0247 76.05
L 49 15 -0026 { - 0142 | .0516 } -.0252 | E-anal | 33.48
N 200 | 99 s 1.00261-0140| 0516 | -0234 | is not | 23.79
B 25 49 -0026 | -0141 | 0516 | -.0252 i 3.59
H (A=2.0)| 25 15 | -0026 | -.0141} 0516 | -.0252 [ 8.59
= 25 5 -.0026 | -.0140 | .0516 | -.0234 272
100 5 43 | .0026 | -0142 | 0516 | -0261 18.78
1 5 15 ] -0026 | -0142 | 0516 } -.0262 5.03
g 5 0026 | -0142 0252 178 ]
4 Full Analysis -.0024 | -.0157 | .0500 | -.0098 81.22
2] 99 (all) 49 -0024 | -.0153 | .0500 | -.0094 76.05
L 99 15 -0024 | -.0157 | .0500 | -.0098 |E-anal.| 33.52
3] w9 s | .'0024 | -0156 ] 0500 | -.0088 | i pot | 23.81
- gg 4% -.0024 -.0};7 .0500 gggg irad| 23.56
0 |(A=2.0) 1 -.0024 | -.0157 | .0500 | - N 6.60
AN & 25 5 -0024 | -0156 | .0500 0088 2.85
48 0024 | -.0157 | .0500 | -0109 18.78
S 15 | . 0024 | -.0157 | .0500 | -0110 5.02
For i §___ | 8 5 -0024 |.-0158 | 0500 | -0099 179
El
Elemants Full Analysis | -0022 | -0171 | .0476 | .0058 61.14
p=10 99 (al) 49 | -0022 | -0168 | 0476 | 0064 76.37
A=20 99 15 | .0022|-9171 | ‘0476 | ‘0059 {E-anal.| 33568
Lo=-10 «B 99 [ 0022 | 0171 | 0476 | 0057 | 15 oy | 23.78
T 28 49 -0022 1 -.0171 ] .0476 | 005 M 23.52
E=2000 |(a-20)] 25 15 | -0022]-0170] .0476 | .0059 ™ 8.67
25 S -.0022 | -.0171 ] .0476 | .0057 2.7
S 49 -0022 | -.0171 | .0476 | .D046 18.85
5 15 -0022 [ -.0171 | .0476 | .0047 5.03
5 s 1. op2l.0i211 o478 178
*1 : Exact eigenvalues are 0.8809, 3 5122, 7.8967, 14.0322, e t.c.
*2 ; Calculation time Is tor both E-value and £-vecior nnsbﬂvlhs 10 the total DOF,
3 : For the full sansanLanalysls folal DOF is 149.
*4 : Assembled fotal DOF varies wih the number of chosen modes for each substructures.
ag. for |25:15] case , the numbar of 1otal DOF Is 254+1541=41
‘5 Tho calculanon time for Ihe firs) deslqn variabte includes the time lor eigenanalysis.
*6 : For eig: . P y modal dala lor Sub0 is used tor the synihesis.

shown only for the eigenvalue sensitivity. For full analy-
sis, one eigensolution set is obtained in about 162.1 sec
and the time for one sensitivity calculation is about 61.5
sec. However, for example, when 25 and 15 modes are

selected for each substructure the elapsed time for the

Transactions of SNAK, Vol. 29, No. 2, May 1992
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sensitivity reduces at most 6.70 sec and the sensitivities

are still calculated with good accuracy.

4. Estimation of Modified Eigensolution

By using the eigensensitivities as the derivatives of
the current eigensolution, the dynamics of the perturbed
structure can be easily estimated In this section, two ty-
pes of analysis have been performed. First, the estimated
eigensolutions are compared to the exact eigensolutions
obtained by the full model eigensystem analysis for the
perturbed structure. Second, examinations of the estima-
ted eigensolutions by the sensitivities either from full
or reduced bases are carried out.

The modified eigenvalues and corresponding eigenvec-
tors, A; and {o, are predicted with the original eigenva-
lues and eigenvectors, A} and {of, based on the following

first order Taylor equations :

DOF OF FULL MODEL: B

[ MODE 1 2 3

ORIGINAL
E-VALUE

.3073 11.1434

4 |

ORIGINALY |

£-VECTOR| [———~
{MODE)
.8
T Testm |7 TEEs
AREA1 -
ANACYS | |5 2934 (|4 3.a8¥% [[ 4 Vs 11 04s2
EsTIM |15 3018 |18 31799 Iﬁ 61285 [1 5 11.2119

WREA2 4\ WAQC
hNaLYs | s 3014 |]og 3.::;9 1\5/ .12¥ Vs 11,167
L

6
6.7949 -5 10.9644

AREAS

INALYS | -5 .313

W
o
Q
=
W
ul
S [estim |t 3 2437 5 32631 |1-
2| ==
4 [’
Z WREA3 AY V) /\ el
B s . ~
= [aNaLYs | | s 2542 -5 3.1836 | |5 6.715% | |Vy 30.994
" 7
€5TIm |15 .26883 5 279243 85,9657 |15 11.0936
Q
W AREAA4 \d - -
o -
BOpNaLYS|Ls 2093 |y 2.940 -5 6.0204 | Vs 11,1052
Q lesTim|y-5 3227 53,3864 -5 63687 -8 12 2081

-5 3,25\5 Y e,ze}% .;5 11.8082

Fig. 4 Estimated eigenvalue and eigenvector for
full model with 50% elementwise modific-
ation comparing with the result of total

eigenanalysis

KR aiR g B20% 298 19924 5A

147
A=+ Pipy (35)
ov
L o)
fod = (g% + P (36)

where, Av is small design variable change.

4.1 Estimation with First-Order Approximation

For the structure as shown in Fig. 2, exact eigensolu-
tions with full model and estimated solutions based on
total sensitivity analysis with a 50% increment in the
elementwise cross sectional areas are comparatively
shown in Fig. 4. The results reveal that there are some
errors due to the first-order linear expansion. Even
though a 50% elementwise change rate may seem like
a considerably large modification, the example of a 50%
elementwise change rate is introduced to show the exag-
gerated output for the sensitivities and resulting modified
eigensollutions. The changes in eigenvalues and eigenve-
ctors for certain modes are checked and tabulated in
Table 5 for the 50% elementwise design increase. From
the evaluations, it is generally noticed that the most effec-

tive design variables are :

i) area number 3 for the first and third mode,

ii) area number 5 for the second and fourth mode.

Even though design variables numbered 3 and 5 are
seen to be dominant, it must be born in mind that the
other design variables also contribute to the change of
structural characteristics and they must also be conside-

red to obtain the optimal design for the structure. For

Table 5 Percentage change from the original

values

CHANGE OF E-VALUE [ CHANGE OF E-VECTOR

DESIGN {Retative Error, %) (PAD, %)

CHANGE Mode Number Mode Number

50% Increment)
1 2 3 4 1 2 3 4

Area # 1 4001 3101-356{-093] 395} 8951 947} 541

Area # 2 -1.76f 243 (-1.93] 061 1.07 | 466 | 3.72|12.25

Area 8 3 -20.70 5.11| 8.84 | -1.61111.39|22.22|10.22| 13.02

Area s 4 |-618{-579|4.44{-0.45] 3.24 |10.04]{10.85] 7.15

Area # 5 5.01] 908} 201 | 9.55| 4.54 |19.24]18.20|27.11
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example, design variable number 4 can increase the se-
cond eigenvalue of the structure by reducing the area
while the others lead to the same effect by increasing
the area which causes an increase in the total structural

weight.

4.2 Errors from full CMS

The estimated eigensolutions from the full basis CMS
and substructural sensitivity synthesis technique and the
results with a 50% elementwise change are shown clear
resemblance of the results of the total analysis as depicted
in Fig. 4. This proves the feasibility of the proposed subs-

tructural sensitivity synthesis technique.

4.3 Truncation Error due to the Reduced Basis

By selecting 2-2 reduced basis for the CMS and eigen-
sensitivity synthesis, estimations were carried out again.
The results are shown in Fig. 5 to compare with the
results of the full basis CMS. As noted before, there are

MODE OF #ULL MODEL: 6
MODE OF SUBMODEL-0: 2

JUNCTION OOF: 2
MODE OF SUBMODEL-1: 2

MODE 1 2 3 4
ORIGINAL
E-VALUE| 30785 3.1086 | 6.2965 | 11.1478
5 -5 5 ]
ORIGINAL
E-VECTOR £\ /\\//
(MODE) L N

.5 -.5 -.5 -.5

K] ] . N
E4VALI .2951 t 3.2043 % 5.056 5 11.041%

MODE A Jh\
for 1.5 . \

P

KAEA1

3.183 -5 6.1682 -5 14,2103

E-VALJ

MODE :

WREAZ . -5 Vs

e vall ] 2437 5 3267119 6.8603|t 5 10.9749
MODE ' VAVK
tar

WREA3| |5 -5 - \\ s
E-vayt® ® & 11,0999

MODE

tor

WREA 4

<

MODIFIEC EIGENVALUE & MODE

-5 12,2149

E- VAL
MOOE
ror
REA5| .5 -'s J

Fig. 5 Estimated eigensolutions by using synthesiz
ed sensitivity with 2-2 reduced basis model

for 50% elementwise change

HED

small errors due to the modal truncation effect but not
significant for the scope of this analysis. For the smaller
10% elementwise modifications (not shown here), the
estimated eigensolutions obtained by using the sensitivi-
ties for the full b>r; CMS and reduced basis CMS show
a smaller mod.' truncation error compared to the case

with the 50% elementwise modification.

4.4 Brief Comments on the Errors

The differences of estimated results by the substructu-
ral sensitivity synthesis technique and their deviation
from the exact eigensolution are summarized. The errors
for the estimated eigensolutions show, while the sensiti-
vities are influenced only by the modal truncation error,
the estimated eigensolutions with varying change rates
are influenced by both the truncation error and the error
due to the Taylor approximation. The estimated eigenso-
lutions show slight inaccuracies in the case of a small
number of bases but the error are permissible for further
iterative design changes. Even though the modal trunca-
tion effect from the use of reduced bases results in less
accurate estimation, the reduced bases require less com-
putation time and, especially for iterative design modifi-
cations, the synthesized eigensensitivities can be utilized

as computationally fast and fruitful design tools.

5. Concluding Remarks

This paper presented a new eigensensitivity synthesis
method which utilizes the basic ideas of CMS to synthe-
size the eigensensitivities by using substructural eigense-
nsitivities. It has been shown that the newly proposed
method works well and offers the following advantages

as compared to the conventional sensitivity analysis -

* Simple re-analysis of an entire structure by using the
substructural modal sensitivities of the appendant
modifiable substructure only.

» Compatibility with both analytically or experimentally
obtained modal data.

* Shorter execution time and memory space.

e Sufficient accuracy even for relatively small number

of basis vectors.
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For the estimation of structural dynamics using the
eigensensitivity, the estimated eigensolutions fit very
when the modification is small. The truncation of
but

well

higher modes leads to a small error within a
manageable and permissible range for further analysis.

So, the proposed substructural eigensensitivity synthesis

promises of being a fruitful tool for improving the dyna-

mics of large structures.
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