• Title/Summary/Keyword: eigen-analysis

Search Result 318, Processing Time 0.028 seconds

Damping Inter-area Low Frequency Oscillations in Large Power Systems with $H_{\infty}$ Control of TCSC PARTI : TCSC Siting (TCSC의 $H_{\infty}$ 제어에 의한 대규모 전력계통의 지역간 저주파진동 억제 PartI : 설치지점 선정)

  • Kim, Yong-Gu;Sim, Gwan-Sik;Song, Seong-Geun;Kim, Yeong-Hwan;Nam, Hae-Gon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.226-232
    • /
    • 2000
  • This paper presents application results of the augmented matrix eigen-sensitivity theories to TCSC siting problem for damping the inter-area low frequency oscillation in the large KEPCO system. First and second-order eigen-sensitivities of the inter-area low frequency oscillation in the large KEPCO system. First and second-order eigen-sensitivities of the inter-area mode are computed fro changes in susceptance of the transmission lines. The lines having high sensitivity are chosen as the initial candidates for installing TCSC. Then for each of the chosen candidates, Bodeplot of the transfer function with line susceptance as the input and the bus voltage at one side of the line as the output is computed. Using the Bode plots, the lines having any zeros near the inter-area mode are screened out since design of TCSC controller is very difficult in such a case. The $H_{\infty}$ TCSC controller installed at any finally chosen candidate is found to be effective in damping the inter-area oscillation, and the proposed TCSC siting algorithm is proved to be valid. Design of $H_{\infty}$ controller is described in Part IIof this paper.

  • PDF

A Study on Optimization Approach for the Quantification Analysis Problem Using Neural Networks (신경회로망을 이용한 수량화 문제의 최적화 응용기법 연구)

  • Lee, Dong-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.206-211
    • /
    • 2006
  • The quantification analysis problem is that how the m entities that have n characteristics can be linked to p-dimension space to reflect the similarity of each entity In this paper, the optimization approach for the quantification analysis problem using neural networks is suggested, and the performance is analyzed The computation of average variation volume by mean field theory that is analytical approximated mobility of a molecule system and the annealed mean field neural network approach are applied in this paper for solving the quantification analysis problem. As a result, the suggested approach by a mean field annealing neural network can obtain more optimal solution than the eigen value analysis approach in processing costs.

The Numerical Analysis of Spindle Motor Bearing Composed of Herringbone Groove Journal and Spiral Groove Thrust Bearing

  • Oh, Sang-Man;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.93-102
    • /
    • 2001
  • Ball bearings have been widely used for the spindle motor bearing in various kinds of information storage devices. Recently many researchers have been trying to replace ball bearings with fluid film bearings because of their superior NRRO(non-repeatable runout) characteristics. In this study, a numerical analysis has been conducted for the complicate bearing system composed of herringbone groove journal bearing and spiral groove thrust bearing for the spindle motor of the information storage device. At first, spindle motor bearing is modeled as journal bearing part and thrust bearing part separately, and then observed various influences of geometric parameters. Previous studies had considered only the translational motion of the journal bearing. However, this study takes the additional 2-degree of freedom rotation into consideration to attempt to describe the real motion of the spindle bearing. As a result, rotational stiffness coefficients and rotational damping coefficients are obtained. In addition, a spindle bearing system made up of four bearings is modeled and interpreted at once and coefficients of dynamic characteristics of each bearing are obtained. Finally, an eigen analysis of bearing system is made with these results. Through this analysis, it is possible to estimate an unstable condition of the system for given geometric parameters and to propose a method which is able to avoid the unstable condition by a proper adjustment of geometric parameters.

  • PDF

Squeal Noise Analysis and Reduction of Drum Brake Using Component Mode Synthesis (구분모드합성에 의한 드럼 브레이크 스퀼 소음 해석 및 저감)

  • Kim, Jin-Ho;Bae, Byung-Ju;Lee, Shi-Bok;Kim, Tae-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.72-80
    • /
    • 2005
  • Recent studies have dealt with brake squeal in terms of the coupled vibration of brake component parts. In this paper, we assemble the mode models derived from FE analysis of the individual components of the drum brake system into the system model by considering the friction interaction of the lining and drum at the interface. The validity of the component models are backed up by the experimental confirmation work. By scrutinizing the real parts of the complex eigen-values of the system, the unstable modes, which may be strong candidate sources of squeal noise, are identified. Mode participation factors are calculated to examine the modal coupling mechanism. The model predictions for the unstable frequencies pointed well the actual squeal noise frequencies measured through field test. Sensitivity analysis is also performed to identify parametric dependency trend of the unstable modes, which would indicate the direction for the squeal noise reduction design. Finally, reduction of the squeal noise tendency through shape modification is tried.

Contingency Analysis for Small Signal Stability of Power Systems (전력계통의 미소신호안정도 상정사고 해석)

  • 심관식;김용구;문채주
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.127-137
    • /
    • 2003
  • Contingency analysis is one of the most important tasks encountered by planning and operation of lafe scale power systems. This paper describes a new contingency analysis methods for small signal security assessment based on the eigen-sensitivity/perturbation of the electromechanical oscillation modes. The eigen-sensitivity/perturbation with respect to line suceptances and controller parameters can he used to find possible sources of the system instability, and to select contingency for small signal stability. Also, the contingency selection to identify critical generators for MW changes can be obtained by computing the relative movement of the system oscillation modes. The proposed algorithm has been successfully tested on the KEPCO systems which is comprised of 791-bus, 1575-branch and program PSS/E

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.

An Application of a Parallel Algorithm on an Image Recognition

  • Baik, Ran
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.219-224
    • /
    • 2017
  • This paper is to introduce an application of face recognition algorithm in parallel. We have experiments of 25 images with different motions and simulated the image recognitions; grouping of the image vectors, image normalization, calculating average image vectors, etc. We also discuss an analysis of the related eigen-image vectors and a parallel algorithm. To develop the parallel algorithm, we propose a new type of initial matrices for eigenvalue problem. If A is a symmetric matrix, initial matrices for eigen value problem are investigated: the "optimal" one, which minimize ${\parallel}C-A{\parallel}_F$ and the "super optimal", which minimize ${\parallel}I-C^{-1}A{\parallel}_F$. In this paper, we present a general new approach to the design of an initial matrices to solving eigenvalue problem based on the new optimal investigating C with preserving the characteristic of the given matrix A. Fast all resulting can be inverted via fast transform algorithms with O(N log N) operations.

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Shim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1033-1036
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

Design of Power System Stability for Local Mode Using Eigen-Sensivity (지역모드 제동을 위한 고유치 감도와 PSS 설계)

  • Song, S.G.;Nam, H.K.;Shim, K.S.;Kim, Y.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.14-16
    • /
    • 2001
  • The Eigen-Sensitivity theory at full system is used to supplement drawback of the existing PSS gain tuning methods in this paper. Hessenberg method is used to linear analysis. This proposed method is successfully tested on KEPCO 2003 off-peak power system to improve local mode. The designed PSS at 2003 off-peak system is installed in 2003 peak system to improve robustness.

  • PDF

Contingency Analysis of Transient Stability Using Eigen-Sensitivity (고유치감도를 이용한 과도안정도의 상정사고 해석법의 개발)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Ku;Song, Sung-Geun;Moon, Chae-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1042-1045
    • /
    • 1999
  • This paper presents a new method for contingency selection of the transient stability. Contingency ranking in transient stability is done by estimating the change in the imaginary part of electro-mechanical oscillation mode, which represents modal synchronizing coefficient. And the change in the imaginary part is obtained by applying eigen-sensitivity theory of augmented matrix to linear system model. The Proposed algorithm was tested for New England System and compared the results with PSS/E dynamic simulation.

  • PDF