• 제목/요약/키워드: effluent

Search Result 1,975, Processing Time 0.026 seconds

Protozoa as an Indicator of Effluent Quality at Advanced Wastewater Treatment Plants (고도폐수처리장에서 원생동물을 이용한 수질예측)

  • Lee, Chan-Hyung;Moon, Kyung-Suk;Park, Sang-Jung;Lee, Eun-Ju;Cho, Jae-Keun;Jin, Ing-Nyol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.389-396
    • /
    • 2006
  • A quantitative survey of the protozoa microfauna at two advanced wastewater treatment plants has been carried out on a weekly basis. The abundance of the protozoa were compared with operating parameters and effluent quality using statistical procedures. The protozoa distribution indicated it seemed the composition of the influent wastewater and operating conditions of plant influenced the structure of protozoa in the plant. In statistical analysis, the distribution of protozoa showed the present operating condition of plant and predicted near-future effluent qualify. Enough data concerning protozoa, operating parameters and effluent has been gathered, the operator has a valuable tool for predicting plant performance and near-future data of effluent based on microscopic examination. Perhaps more importantly it can be used to actually control the plant to adjust the operating conditions to obtain the protozoal populations that have been shown to provide the best effluent quality.

Study on Natural Wastewater Treatment Systems by Constructed Wetland for Rural Area (인공습지에 의한 농촌오수처리에 관한 연구)

  • 윤춘경;권순국;김형중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.55-63
    • /
    • 1997
  • Constructed wetland system which can be applied to the rural wastewater treatment system was examined by pilot plant in Kon-Kuk University. Hydraulic loading rate of wastewater was about 0.16m$^3$/m$^2$. day and theoretical detention time in the system was 1.38 days. The effluent of the septic tank for the school building was applied as inflow to the system. The influent concentration of DO was zero but effluent was up to 4.37mg/${\ell}$ which implies that oxygen was supplied enough from atmosphere by reaeration to support biological activity of the system. Average influent concentration of BOD was 104mg/${\ell}$ and effluent was 24mg/${\ell}$ with average removal rate of 76%. Average influent concentration of COD was 215mg/${\ell}$ and effluent was 63mg/${\ell}$ with average removal rate of 70 % . Average influent concentration of SS was 78mg/${\ell}$ and effluent was 10mg/${\ell}$ with average removal rate of 87%. Two components, BOD and SS, are regulated by law to keep maximum water quality standard of 80mg/${\ell}$ when daily outflow rate is less than 100$m^3$/day which is the case of most rural communities. Therefore, the results from the experiment showed that constructed wetland system can meet the water quality standard easily. Average influent concentration of total nitrogen was 165mg/lwhich is relatively higher than normal wastewater, and effluent was about 156mg/${\ell}$ with average removal rate of only 6%. Average influent concentration of total phosphorus was 41 mg/${\ell}$ and effluent was 6mg/${\ell}$ with average removal rate of 87%. Overall, constructed wetland system was thought to be effective to treat wastewater if nitrogen removal mechanism is improved. Considering low cost, less maintenance, and high treatability, this system can be a practical alternative for the wastewater treatment in rural area The experiment was performed during the summer and fall season, and treatment efficiency of the system is expected to decrease in low temperature. therefore, further study including temperature is required to evaluate feasibility of the system more in detail.

  • PDF

Analysis of 1MW Closed OTEC Cycle Using Thermal Effluent and Waste Heat (발전소 온배수를 이용한 1MW급 폐쇄형 해양온도차발전 성능해석)

  • Kim, Hyeon-Ju;Lee, Ho-Saeng;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.470-476
    • /
    • 2010
  • The thermodynamic performance of closed ocean thermal energy conversion (OTEC) cycle with 1 MW gross power was evaluated to obtain the basic data for the optimal design of OTEC. The basic thermodynamic model for OTEC is Rankine cycle and the thermal effluent from power plant was used for the heat source of evaporator. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the temperature variation of thermal effluent. The saturated pressure of evaporator increased with respect to the increase of thermal effluent temperature, so the cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 1 MW gross power. As the thermal effluent temperature increases about $15^{\circ}C$, the cycle efficiency increased approximately 44%. So, it was revealed that thermal effluent from power plant is important heat source for OTEC plant. Also, if there is an available waste heat, it can be transferred heat to the working fluid form the evaporator through heat exchanger and cycle efficiency will be increased.

The Effect of Reject Water on the Water Quality of Effluent from S Sewage Treatment Plant (S 하수처리장 반류수가 방류수 수질에 미치는 영향)

  • Kim, Mi-Ran;Kim, Kyoung-Hee;Park, Hae-Sik;Kang, Dong-Hyo;Lee, Jea-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.323-329
    • /
    • 2010
  • To acquire preliminary data for the control of total nitrogen (TN) in S sewage treatment plant, which processes merging food waste and sewage, the effect of reject water on the total nitrogen in the effluent was examined in this study. Water quality data for the plant during the winter period were applied to calculate the mass balance. It was calculated that at least more than 231 kg/d TN should be removed to control the TN concentration in the effluent. Assuming 18 ppm as the goal TN concentration in the effluent, about 941 kg/d TN should be removed from this plant. Approximately 10% more TN should be removed than at present to achieve this result. It was observed that dewatering the filtrate had a considerably greater effect on the total nitrogen in the effluent than the reject waters. The dewatered filtrate contained 1,399kg/d TN. The contribution of the dewatered filtrate to the TN concentration in the effluent was 0.183, which was 7 to 23 times greater than the other reject waters. In addition, the amount of total nitrogen from the reject water, with the exception of the dewatering filtrate, was lower than the amount of TN that should be removed from S sewage treatment plant. Therefore, it was concluded that one of the most effective methods for controlling the TN concentration in effluent was the removal of the TN contained in the dewatering filtrate.

Characteristics of TOC in effluent discharge from public sewage treatment works in korea (우리나라 공공하수처리시설의 TOC 배출특성 및 관리방안 연구)

  • Jeong, Dong-Hwan;Choi, In-Cheol;Cho, Yangseok;Ahn, Kyunghee;Chung, Hyen-Mi;Kwon, Ohsang;Park, Hoowon;Shin, Hyunsang;Hur, Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.657-668
    • /
    • 2014
  • Under Korea's Enforcement Decree of the Framework Act on Environmental Policy amended in 2013, total organic carbon (TOC) is newly added as water quality parameter to assess organic pollution in water and aquatic ecosystem. To meet the TOC requirement and improve quality of effluent discharged into public watershed, it is also necessary to develop standards for TOC in effluent from public sewage treatment works (PSTWs). In this study, we reviewed the characteristics and removal efficiency of TOC in influent and effluent of PSTWs. The study found that phosphorus treatment process removed not only soluble phosphorus but also a portion of TOC remaining after the secondary treatment process. TOC concentration in effluent from PSTWs operated in tandem with industrial wastewater treatment work was higher due to influx of insoluble substances from the industrial wastewater treatment work. In order to lay a foundation for the management of TOC from PSTWs, it is necessary to carry out research on TOC from different perspectives. For example, studies on the generation mechanism of TOC and the impact of TOC on drinking water resources, assessment of effluent qualities through monitoring, and development of measures to control TOC for the preservation of aquatic ecosystem are needed.

Alarm Setpoint Determination Method of Gaseous Effluent Radiation Monitoring Systems Using Dose Factors Based on ICRP-60 Recommendations (선량환산인자를 이용한 기체유출물 RMS 경보설정 개선방안)

  • 박규준;김희근;하각현;엄희문
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.491-496
    • /
    • 2003
  • In Korea, the dose limits to the public were reduced according to ICRP-60 recommendations. The secondary quantities, Effluent Concentration Limits (ECLs) were derived and enacted to Korean Atomic Laws based on ICRP-60 recommendations. The Korea atomic laws require assurance that radioactive materials within gaseous effluents do not exceed dose limits and ECLs. This simply means that any effluent that would possibly contain radioactivity must be monitored. There are various methods to monitor the radioactivity of effluent monitor to satisfy the dose limits and the ECLs for gaseous effluents. The many factors (safety margin) should be considered in determining of the setpoint of effluent monitor, following these limits. In this study, we studied the determination method of alarm setpoint for gaseous effluent Radiation Monitoring Systems using dose factors considered the main pathway of radionuclides to compare the preceding determination method of alarm setpoint for gaseous effluent RMSs using dose assessment program considered all the practicable pathways of radionuclides.

  • PDF

A Study on the Determination of Formaldehyde Effluent Limitation in the Industrial Wastewater (산업계 배출수에서 포름알데히드의 배출허용기준 설정방안 고찰)

  • Jeong, Dong-Hwan;Shin, Jinsoo;Shin, Kisik;Kim, Jaehoon;Kim, Yongseok;Rhew, Doughee
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • This study looked at how to establish effluent limitation standards for formaldehyde, a toxic chemical widely used in industries. To this end, we reviewed Water Quality Based Effluent Limitation (WQBEL), Technology Based Effluent Limitation (TBEL), and water quality criteria for protection of human health and aquatic organism. Based on the results, we estimated formaldehyde effluent limitation standards appropriate to control water quality of industrial wastewater in Korea. However, this study has limits due to the lack of some data necessary in estimating formaldehyde effluent limitation. For example, although water quality criteria based on non-carcinogenic properties of formaldehyde were calculated, those based on carcinogenic properties were not be able to estimate because of the absence of applicable cancer potency factor q1. Without applicable factor, we calculated water quality standards for formaldehyde based on water quality criteria of advanced countries including the United States, while with no water quality standard we referred to applicable drinking water quality standards of other countries. For eco-toxicity based on water quality criteria, proper figures could not be calculated since there have been few reliable data.

Total Phosphorus Removal in Cattail Wetland Purifying Effluent from a Night Soil Treatment Plant during Its Initial Operation (분뇨처리장 방류수를 정화하는 부들습지의 초기운영 단계에서 총인의 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • Total phosphorus(TP) removal was examined in a surface-flow wetland constructed in April 2003 during its initial operating stage from June to November 2003. Its dimensions were 87mL by 14mW. It was a part of a four-wetland-cell treatment system constructed near the Kohung Estuarine Lake located in the southern part of Korea. Effluent from a night soil treatment plant was discharged into the wetland and purified effluent from the wetland was discharged into Sinyang Stream flowing into the Lake. Cattails(Typha angustifolia ) from natural wetlands were cut at about 40 cm height and transplanted into the wetland. An average of 25.0$m^3$/day of effluent flowed from the plant into the wetland. Water depth was maintained about 0.2m and hydraulic detention time was about 5.2 days. Average heights of the cattail stems in June and October 2003 were 47.2 and 164.6cm, respectively. The average number of stems was 10.2 stems/$m^2$ in June 2003 and 18.8 stems/$m^2$ in October 2003. Average temperature of influent and effluent ranged 23.4 and $24.2^{\circ}C$, respectively. The average TP concentrations of influent and effluent were about 1.31, 0.50mg/L, respectively. TP loading rate of influent into the wetland averaged 26.81mg/$m^2$, day and average TP loading rate of effluent was 10.04mg/$m^2$, day. Monthly average TP removal by the wetland during the warm growing season of cattails(June to September) ranged 16.28~19.57mg/$m^2$, day and during the cold senescent period (October to November) ranged 12.62~13.90mg/$m^2$, day. TP removal in the wetland continued during the cold winter months and was primarily done by sedimentation and precipitation of phosphorus rather than phosphorus absorption by cattails and microorganisms.

Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water (유출지하수열원 지열히트펌프의 냉난방성능)

  • Park, Geun-Woo;Nam, Hyun-Kyu;Kang, Byung-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

Comparison of Nitrogen Removal Between Reed and Cattail Wetland Cells in a Treatment Pond System (갈대 및 부들 습지셀의 연못시스템 방류수 질소제거 비교)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.234-239
    • /
    • 2004
  • [ $NO_3$ ]-N and T-N removal rates of cattail wetland cells were compared with those of reed wetland cells. The examined cells were a part of a pond-wetland system composed of two ponds in series and six wetland cells in parallel. Each wetland cell was 25m in length and 6m in width. Cattails (Typha angustifolia) were transplanted into three cells and reeds Phragmites australis) into another three ones in June 2000. Water of Sinyang stream flowing into Kohung Estuarine lake located in the southern part of the Korean Peninsula was pumped into the primary pond, its effluent was discharged into the secondary pond Effluent from the secondary pond was funneled into each cell. Two cattail and reed cells were chosen for this research. Water quantity and quality of influnt and effluent were analyzed front May 2001 through October 2001. The volume of influent and effluent of the cells averaged about $20.0\;m^3/day$ and $19.3\;m^3/day$, respectively. Hydraulic retention time was approximately 1.5 days. Influent $NO_3$-N concentration for the four cells averaged 2.39 mg/L. Effluent $NO_3$-N concentration far the cattail and reed cells averaged 1.74 and 1.78 mg/L, respectively. Average $NO_3$-N retention rate for the cattail and reed cells by mass was 30 and 29%, respectively. Influent T-N concentration far the four cells averaged 4.13 mg/L. Effluent T-N concentration for the cattail and reed cells averaged 2.55 and 2.61 mgL respectively. Average T-N retention rate for the cattail and reed cells by mass was 39 and 38%, respectively. $NO_3$-N and T-N concentrations in effluent from the cattail cells were significantly low (p=0.04), compared with those from the reed cells. Cattail wetland cells were more efficient for $NO_3$-N and T-N abatement than reed ones.