In molecular biology, approximate subsequence search is one of the most important operations. In this paper, we propose an accurate and efficient method for approximate subsequence search in large DNA databases. The proposed method basically adopts a binary trie as its primary structure and stores all the window subsequences extracted from a DNA sequence. For approximate subsequence search, it traverses the binary trie in a breadth-first fashion and retrieves all the matched subsequences from the traversed path within the trie by a dynamic programming technique. However, the proposed method stores only window subsequences of the pre-determined length, and thus suffers from large post-processing time in case of long query sequences. To overcome this problem, we divide a query sequence into shorter pieces, perform searching for those subsequences, and then merge their results. To verify the superiority of the proposed method, we conducted performance evaluation via a series of experiments. The results reveal that the proposed method, which requires smaller storage space, achieves 4 to 17 times improvement in performance over the suffix tree based method. Even when the length of a query sequence is large, our method is more than an order of magnitude faster than the suffix tree based method and the Smith-Waterman algorithm.
Trajectories of RFID tags can be modeled as a line, denoted by tag interval, captured by an RFID reader and indexed in a three-dimensional domain, with the axes being the tag identifier (TID), the location identifier (LID), and the time (TIME). Distribution of tag intervals in the domain space is an important factor for efficient processing of a query for tracing tags and is changed according to arranging coordinates of each domain. Particularly, the arrangement of LIDs in the domain has an effect on the performance of queries retrieving the traces of tags as times goes by because it provides the location information of tags. Therefore, it is necessary to determine the optimal ordering of LIDs in order to perform queries efficiently for retrieving tag intervals from the index. To do this, we propose LID proximity for reordering previously assigned LIDs to new LIDs and define the LID proximity function for storing tag intervals accessed together closely in index nodes when a query is processed. To determine the sequence of LIDs in the domain, we also propose a reordering scheme of LIDs based on LID proximity. Our experiments show that the proposed reordering scheme considerably improves the performance of Queries for tracing tag locations comparing with the previous method of assigning LIDs.
The trajectory preservation property that stores only one trajectory in a leaf node is the most important feature of an index structure, such as the TB-tree for retrieving object's moving paths in the spatio-temporal space. It performs well in trajectory-related queries such as navigational queries and combined queries. But, the MBR of non-leaf nodes in the TB-tree have large amounts of dead space because trajectory preservation is achieved at the sacrifice of the spatial locality of trajectories. As dead space increases, the overlap between nodes also increases, and, thus, the classical range query cost increases. We present a new split policy and entry relocation policies, which have no deterioration of the performance for trajectory-related queries, for improving the performance of range queries. To maximally reduce the dead space of a non-leaf node's MBR, the Maximal Area Reduction (MAR) policy is used as a split policy for non-leaf nodes. The entry relocation policy induces entries in non-leaf nodes to exchange each other for the purpose of reducing dead spaces in these nodes. We propose two algorithms for the entry relocation policy, and evaluate the performance studies of new algorithms comparing to the TB-tree under a varying set of spatio-temporal queries.
A stream processor uses resource sharing method for efficient of limited resource in multiple continuous queries. The previous methods process aggregate queries to consist the level structure. So insert operation needs to reconstruct cost of the level structure. Also a search operation needs to search cost of aggregation information in each size of sliding windows. Therefore this paper uses linear structure for optimization of sliding window aggregations. The method comprises of making decision, generation and deletion of panes in sequence. The decision phase determines optimum pane size for holding accurate aggregate information. The generation phase stores aggregate information of data per pane from stream buffer. At the deletion phase, panes are deleted that are no longer used. The proposed method uses resources less than the method where level structures were used as data structures as it uses linear data format. The input cost of aggregate information is saved by calculating only pane size of data though numerous stream data is arrived, and the search cost of aggregate information is also saved by linear searching though those sliding window size is different each other. In experiment, the proposed method has low usage of memory and the speed of query processing is increased.
A data warehouse stores information that is collected from multiple, heterogeneous information sources for the purpose of complex querying and analysis. Information in the warehouse is typically stored In the form of materialized views, which represent pre-computed portions of frequently asked queries. One of the most important tasks of designing a warehouse is the selection of materialized views to be maintained in the warehouse. The goal is to select a set of views so that the total query response time over all queries can be minimized while a limited amount of time for maintaining the views is given(maintenance-cost view selection problem). In this paper, we propose an efficient solution to the maintenance-cost view selection problem using a genetic algorithm for computing a near-optimal set of views. Specifically, we explore the maintenance-cost view selection problem in the context of OR view graphs. We show that our approach represents a dramatic improvement in terms of time complexity over existing search-based approaches that use heuristics. Our analysis shows that the algorithm consistently yields a solution that only has an additional 10% of query cost of over the optimal query cost while at the same time exhibits an impressive performance of only a linear increase in execution time. We have implemented a prototype version of our algorithm that is used to evaluate our approach.
As Internet technology evolves, there is growing need of Internet queries involving multiple information sources. Efficient processing of such queries necessitates the integrated summary data that compactly represents the data distribution of the entire database scattered over many information sources. This paper presents an efficient method of managing the integrated summary data based on the wavelet transform and addresses Internet query processing using the integrated summary data. The simplest method for creating the integrated summary data would be to summarize the integrated data sidtribution obtained by merging the data distributions in multiple information sources. However, this method suffers from the high cost of transmitting storing and merging a large amount of data distribution. To overcome the drawbacks, we propose a new wavelet transform based method that creates the integrated summary data by merging multiple summary data and effective method for optimizing Internet queries using it A wavelet transformed summary data is converted to satisfy conditions for merging. Moreover i the merging process is very simpe owing to the properties of the wavelet transform. we formally derive the upper bound of the error of the wavelet transformed intergrated summary data. Compared with the histogram-based integrated summary data the wavelet transformedintegrated summary data provesto be 1.6~5.5 time more accurate when used for selectivity estimation in experiments. In processing Internet top-N queries involving 56 information sources using the integrated summary data reduces the processing cost to 1/44 of the cost of not using it.
Journal of Korea Spatial Information System Society
/
v.11
no.2
/
pp.143-150
/
2009
Spatial data warehouses are a system managing manufactured data through ETL step with extracted spatial data from spatial DBMS or various data sources. In load period, duplicated spatial data in the same subject are not useful in extracted spatial data dislike aspatial data and waste the storage space by the feature of spatial data. Also, in case of extracting source data on heterogeneous system, as those have different spatial type and schema, the spatial extract method is required for them. Processing a step matching address about extracted spatial data using a standard Geocoding DB, the exiting methods load formal data set. However, the methods cause the comparison operation of extracted data with Geocoding DB, and according to integrate spatial data by subject it has problems which do not consider duplicated data among heterogeneous spatial DBMS. This paper proposes efficient extracting method to integrate update query extracted from heterogeneous source systems in data warehouse constructer. The method eliminates unnecessary extracting operation cost to choose related update queries like insertion or deletion on queries generated from loading to current point. Also, we eliminate and integrate extracted spatial data using update query in source spatial DBMS. The proposed method can reduce wasting storage space caused by duplicate storage and support rapidly analyzing spatial data by loading integrated data per loading point.
A sensor network is composed of a large number of tiny devices, scattered and deployed in a specified regions. Each sensing device has processing and wireless communication capabilities, which enable it to gather information from the sensing area and to transfer report messages to a base station. The energy-efficient routing paths are established when the base station requests a query, since each node has several characteristics such as low-power, constrained energy, and limited capacity. The established paths are recovered while minimizing the total transmit energy and maximizing the network lifetime when the paths are broken. In this paper, we propose a routing algorithm that each sensor node reports its adjacent link information to the sink node when a sink node broadcasts a query. The sink node manages the total topology and establishes routing paths. This algorithm has a benefit to find an alternative path by reducing the negotiating messages for establishing paths when the established paths are broken. To reduce the overhead of collection information, each node has a link information before reporting to the sink. Because the node recognizes which nodes are adjacent. The proposed algorithm reduces the number of required messages, because sensor nodes receive and report routing messages for establishment at the beginning of configuring routing paths, since each node keeps topology information to establish a routing path, which is useful to report sensing tasks in monitoring environments.
In order to provide various business analysis methods, OLAP(On-Line Analytical Processing) systems represent their data with multidimensional structures. These multidimensional data are often delivered to users in the horizontal format of tables whose columns are corresponding to values of dimension attributes. Since the horizontal tables nay have a large number of columns, they cannot be stored directly in relational database systems. Furthermore, the tables are likely to have many null values (i.e., sparse tables). In order to manage the horizontal tables efficiently, we can store them as the vertical format of tables which has dimension attribute names as their columns thus transforms the columns of horizontal tables into rows. In this way, every queries for horizontal tables have to be transformed into those for vertical tables. This paper proposed a technique for transforming horizontal table queries into vertical table ones by utilizing not only traditional relational algebraic operators but also the PIVOT operator which recent DBMS versions are providing. For achieving this goal, we designed a relational algebraic expression equivalent to the PIVOT operator and we formally proved their equivalence. Then, we developed a transformation technique for horizontal table queries using the PIVOT operator. We also performed experiments to analyze the performance of the proposed method. From the experimental results, we revealed that the proposed method has better performance than existing methods.
Park, Sang-Hyeon;Kim, Sang-Uk;Jo, Jun-Seo;Lee, Heon-Gil
The KIPS Transactions:PartD
/
v.9D
no.2
/
pp.173-184
/
2002
This paper discuss an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, Kim et al. suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multidimensional index using a feature vector as indexing attributes. For query processing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verify the superiority of our approach, we perform extensive experiments. The results reveal that our approach achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.