• Title/Summary/Keyword: efficient coding

Search Result 909, Processing Time 0.027 seconds

An Efficient Repository Model for Online Software Education

  • Lee, Won Joo;Baek, Yuncheol;Yang, Byung Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.219-226
    • /
    • 2016
  • In this paper, we propose an efficient repository model for online software education. The software education of app development consists of 7 stages: coding & debugging, submit, collaboration, review, validate, deployment, certification. Proposed repository model supports all 7 stages efficiently. In the coding & debugging stage, the students repeat coding and debugging of source. In the submit stage, the output of previous process such as source codes, project, and videos, are uploaded to repository server. In the collaboration stage, other students or experts can optimize or upgrade version of source code, project, and videos stored in the repository. In the review stage, mentors can review and send feedbacks to students. In the validate stage, the specialists validate the source code, project, and the videos. In the deployment stage, the verified source code, project, and videos are deployed. In the certification stage, the source code, project, and the videos are evaluated to issue the certificate.

Similarity-Based Patch Packing Method for Efficient Plenoptic Video Coding in TMIV

  • Kim, HyunHo;Kim, Yong-Hwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.250-252
    • /
    • 2022
  • As immersive video contents have started to emerge in the commercial market, research on it is required. For this, efficient coding methods for immersive video are being studied in the MPEG-I Visual workgroup, and they released Test Model for Immersive Video (TMIV). In current TMIV, the patches are packed into atlas in order of patch size. However, this simple patch packing method can reduce the coding efficiency in terms of 2D encoder. In this paper, we propose patch packing method which pack the patches into atlases by using the similarity of each patch for improving coding efficiency of 3DoF+ video. Experimental result shows that there is a 0.3% BD-rate savings on average over the anchor of TMIV.

  • PDF

Multi-Sever based Distributed Coding based on HEVC/H.265 for Studio Quality Video Editing

  • Kim, Jongho;Lim, Sung-Chang;Jeong, Se-Yoon;Kim, Hui-Yong
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.201-208
    • /
    • 2018
  • High Efficiency Video Coding range extensions (HEVC RExt) is a kind of extension model of HEVC. HEVC RExt was specially designed for dealing the high quality images. HEVC RExt is very essential for studio editing which handle the very high quality and various type of images. There are some problems to dealing these massive data in studio editing. One of the most important procedure is re-encoding and decoding procedure during the editing. Various codecs are widely used for studio data editing. But most of the codecs have common problems to dealing the massive data in studio editing. First, the re-encoding and decoding processes are frequently occurred during the studio data editing and it brings enormous time-consuming and video quality loss. This paper, we suggest new video coding structure for the efficient studio video editing. The coding structure which is called "ultra-low delay (ULD)". It has the very simple and low-delayed referencing structure. To simplify the referencing structure, we can minimize the number of the frames which need decoding and re-encoding process. It also prevents the quality degradation caused by the frequent re-encoding. Various fast coding algorithms are also proposed for efficient editing such as tool-level optimization, multi-serve based distributed coding and SIMD (Single instruction, multiple data) based parallel processing. It can reduce the enormous computational complexity during the editing procedure. The proposed method shows 9500 times faster coding speed with negligible loss of quality. The proposed method also shows better coding gain compare to "intra only" structure. We can confirm that the proposed method can solve the existing problems of the studio video editing efficiently.

Efficient Correlation Noise Modeling and Performance Analysis for Distributed Video Coding System (분산 동영상 부호화 시스템을 위한 효과적인 상관 잡음 모델링 및 성능평가)

  • Moon, Hak-Soo;Lee, Chang-Woo;Lee, Seong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.368-375
    • /
    • 2011
  • In the distributed video coding system, the parity bits, which are generated in encoders, are used to reconstruct Wyner-Ziv frames. Since the original Wyner-Ziv frames are not known in decoders, the efficient correlation noise modeling for turbo or LDPC code is necessary. In this paper, an efficient correlation noise modeling method is proposed and the performance is analyzed. The method to estimate the quantization parameters for key frames, which are encoded using H.264 intraframe coding technique, is also proposed. The performance of the proposed system is evaluated by extensive computer simulations.

An Efficient Competition-based Skip Motion Vector Coding Scheme Based on the Context-based Adaptive Choice of Motion Vector Predictors (효율적 경쟁 기반 스킵모드 부호화를 위한 적응적 문맥 기반 움직임 예측 후보 선택 기법)

  • Kim, Sung-Jei;Kim, Yong-Goo;Choe, Yoon-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.464-471
    • /
    • 2010
  • The demand for high quality of multimedia applications, which far surpasses the rapid evolution of transmission and storage technologies, makes better compression coding capabilities ever increasingly more important. In order to provide enhanced video coding performance, this paper proposes an efficient competition-based motion vector coding scheme. The proposed algorithm adaptively forms the motion vector predictors based on the contexts of scene characteristics such as camera motion and nearby motion vectors, providing more efficient candidate predictors than the previous competition-based motion vector coding schemes which resort to the fixed candidates optimized by extensive simulations. Up to 200% of compression gain was observed in the experimental results for the proposed scheme applied to the motion vector selection for skip mode processing.

Segmention-Based Residual Image Coding Using Classified Vectior Quantizer (분할기반 잉여신호의 CVQ 영상 부호화)

  • 김남철;김종우;홍원학;석민수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.63-71
    • /
    • 1993
  • An efficient RVQ image coding method is proposed using the segmentation-based coding and CVQ techniques. In the proposed method the residual image, the difference between an original image and the synthesized one obtained from the segmentation-based coding, is first dividel into $\times$4 subblocks. They are then individually coded in the spatial domain using a simple CVQ. Experimental results show that the proposed method yields better quality of the reconstructed images in both PSNR and subjective test over the basic VQ and SMVQ.

  • PDF

Wavelet Image Coding with Optimized Zerotree Quantization (최적화된 제로트리 양자화를 이용한 웨이브렛 패킷 이미지 코딩)

  • 이양원
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.161-164
    • /
    • 2000
  • Recently efficient image coding using zerotree have been proposed. In these methods, the locations of nonzero wavelet coefficient are encoded with a tree structure, called zerotree, which can exploit the self-similarity of the wavelet pyramid decomposition across different scales. These are very especially in low bit rate image coding. In this paper, two zerotree image coding algorithm, EZW and SPHIT are briefly introduced, and a new zerotree searching scheme is proposed to emphasize the significance of a wavelet coefficient by its orientation as well as its scale.

  • PDF

Scalable Video Coding Using Large Block and its Performance Analysis (Large Block을 적용한 SVC 부호화 및 성능분석)

  • Park, Un-Ki;Choi, Haechul;Kang, Jung Won;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.249-260
    • /
    • 2013
  • Recently, High-Efficiency Video Coding (HEVC) has been developed as a new video coding standard mainly focusing on the coding of ultra high definition (UHD) videos as the high resolution and high quality videos are getting more popular. Furthermore, the scalable extension of HEVC is being standardized for more efficient provision of HD and UHD services in the communications-broadcasting convergence environment. In this paper, we propose an improved scalable video coding method of H.264/AVC to achieve high coding efficiency particularly for UHD and HD videos. The basic idea is to allow large block size in H.264/AVC SVC, which results in more efficient inter-layer prediction and syntax elements coding. The experimental results show that it achieves an average 4.53% reduction in BD-rate relative to H.264/AVC SVC.

Depth Map Based Distributed Multi-view Video Coding Scheme through an Efficient Side Information Generation (효율적인 보조 정보 생성을 통한 깊이지도 기반의 분산 다시점 비디오 코딩 기법)

  • Yoo, Ji-Hwan;Lee, Dong-Seok;Kim, Tae-June;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1093-1103
    • /
    • 2009
  • In this paper, we propose a new depth map based distributed multi-view video coding algorithm through an efficient side information generation. A distributed video coding scheme corrects errors between an original image and side information generated at a decoder by using channel coding techniques. Therefore, the more accurate side information is generated, the better performance of distributed video coding scheme is achieved. In the proposed algorithm, a distributed video coding scheme is applied to multi-view video coding based on depth map. Side information is also generated from images of adjacent views through 3D warping by using a depth map and is also combined with MCTI(motion compensated temporal interpolation) which uses images on a temporal axis, and 3D warping. Experimental results show that side information generated by using the proposed algorithm has 0.97dB better average PSNR compared with using MCTI and 3D warping separated. In addition, 8.01% of average bit-rate has been decreased while the same PSNR in R-D curves is kept.

Distributed Coding Scheme for Multi-view Video through Efficient Side Information Generation

  • Yoo, Jihwan;Ko, Min Soo;Kwon, Soon Chul;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1762-1773
    • /
    • 2014
  • In this paper, a distributed image coding scheme for multi-view video through an efficient generation of side information is proposed. A distributed video coding technique corrects the errors in the side information, which is generated with the original image, by using the channel coding technique at the decoder. Therefore, the more correct the generated side information is, the better the performance of distributed video coding. The proposed technique is to apply the distributed video coding schemes to the image coding for multi-view video. It generates side information by selectively and efficiently using both 3-dimensional warping based on the depth map with spatially adjacent frames and motion-compensated temporal interpolation with temporally adjacent frames. In this scheme the difference between the adjacent frames, the sizes of the motion vectors for the adjacent blocks, and the edge information are used as the selection criteria. From the experiments, it was observed that the quality of the side information generated by the proposed technique was improved by the average peak signal-to-noise ratio of 0.97dB than the one by motion-compensated temporal interpolation or 3-dimensional warping. The result from analyzing the rate-distortion curves revealed that the proposed scheme could reduce the bit-rate by 8.01% on average at the same peak signal-to-noise ratio value, compared to previous work.