• Title/Summary/Keyword: effector genes

Search Result 73, Processing Time 0.026 seconds

Natural Variation in Virulence of Acidovorax citrulli Isolates That Cause Bacterial Fruit Blotch in Watermelon, Depending on Infection Routes

  • Song, Yu-Rim;Hwang, In Sun;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.29-42
    • /
    • 2020
  • Acidovorax citrulli causes bacterial fruit blotch in Cucurbitaceae, including watermelon. Although A. citrulli is a seed-borne pathogen, it can cause diverse symptoms in other plant organs like leaves, stems and fruits. To determine the infection routes of A. citrulli, we examined the virulence of six isolates (Ac0, Ac1, Ac2, Ac4, Ac8, and Ac11) on watermelon using several inoculation methods. Among six isolates, DNA polymorphism reveals that three isolates Ac0, Ac1, and Ac4 belong to Clonal Complex (CC) group II and the others do CC group I. Ac0, Ac4, and Ac8 isolates efficiently infected seeds during germination in soil, and Ac0 and Ac4 also infected the roots of watermelon seedlings wounded prior to inoculation. Infection through leaves was successful only by three isolates belonging to CC group II, and two of these also infected the mature watermelon fruits. Ac2 did not cause the disease in all assays. Interestingly, three putative type III effectors (Aave_2166, Aave_2708, and Aave_3062) with intact forms were only found in CC group II. Overall, our results indicate that A. citrulli can infect watermelons through diverse routes, and the CC grouping of A. citrulli was only correlated with virulence in leaf infection assays.

From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes

  • Byun, Hae-Ok;Lee, Young-Kyoung;Kim, Jeong-Min;Yoon, Gyesoon
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.549-558
    • /
    • 2015
  • Cellular senescence is a process by which cells enter a state of permanent cell cycle arrest. It is commonly believed to underlie organismal aging and age-associated diseases. However, the mechanism by which cellular senescence contributes to aging and age-associated pathologies remains unclear. Recent studies showed that senescent cells exert detrimental effects on the tissue microenvironment, generating pathological facilitators or aggravators. The most significant environmental effector resulting from senescent cells is the senescence-associated secretory phenotype (SASP), which is constituted by a strikingly increased expression and secretion of diverse pro-inflammatory cytokines. Careful investigation into the components of SASPs and their mechanism of action, may improve our understanding of the pathological backgrounds of age-associated diseases. In this review, we focus on the differential expression of SASP-related genes, in addition to SASP components, during the progress of senescence. We also provide a perspective on the possible action mechanisms of SASP components, and potential contributions of SASP-expressing senescent cells, to age-associated pathologies.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

A Marine Bacterium with Animal-Pathogen-Like Type III Secretion Elicits the Nonhost Hypersensitive Response in a Land Plant

  • Boyoung Lee;Jeong-Im Lee;Soon-Kyeong Kwon;Choong-Min Ryu;Jihyun F. Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.584-591
    • /
    • 2023
  • Active plant immune response involving programmed cell death called the hypersensitive response (HR) is elicited by microbial effectors delivered through the type III secretion system (T3SS). The marine bacterium Hahella chejuensis contains two T3SSs that are similar to those of animal pathogens, but it was able to elicit HR-like cell death in the land plant Nicotiana benthamiana. The cell death was comparable with the transcriptional patterns of H. chejuensis T3SS-1 genes, was mediated by SGT1, a general regulator of plant resistance, and was suppressed by AvrPto1, a type III-secreted effector of a plant pathogen that inhibits HR. Thus, type III-secreted effectors of a marine bacterium are capable of inducing the nonhost HR in a land plant it has never encountered before. This suggests that plants may have evolved to cope with a potential threat posed by alien pathogen effectors. Our work documents an exceptional case of nonhost HR and provides an expanded perspective for studying plant nonhost resistance.

Oomycete pathogens, red algal defense mechanisms and control measures

  • Xianying Wen;Giuseppe C. Zuccarello;Tatyana A. Klochkova;Gwang Hoon Kim
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.203-215
    • /
    • 2023
  • Oomycete pathogens are one of the most serious threats to the rapidly growing global algae aquaculture industry but research into how they spread and how algae respond to infection is unresolved, let alone a proper classification of the pathogens. Even the taxonomy of the genera Pythium and Olpidiopsis, which contain the most economically damaging pathogens in red algal aquaculture, and are among the best studied, needs urgent clarification, as existing morphological classifications and molecular evidence are often inconsistent. Recent studies have reported a number of genes involved in defense responses against oomycete pathogens in red algae, including pattern-triggered immunity and effector-triggered immunity. Accumulating evidence also suggests that calcium-mediated reactive oxygen species signaling plays an important role in the response of red algae to oomycete pathogens. Current management strategies to control oomycete pathogens in aquaculture are based on the high resistance of red algae to abiotic stress, these have environmental consequences and are not fully effective. Here, we compile a revised list of oomycete pathogens known to infect marine red algae and outline the current taxonomic situation. We also review recent research on the molecular and cellular responses of red algae to oomycete infection that has only recently begun, and outline the methods currently used to control disease in the field.

Advanced Bioremediation Strategies for Organophosphorus Compounds

  • Anish Kumar Sharma;Jyotsana Pandit
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.374-389
    • /
    • 2023
  • Organophosphorus (OP) pesticides, particularly malathion, parathion, diazinon, and chlorpyrifos, are widely used in both agricultural and residential contexts. This refractory quality is shared by certain organ phosphorus insecticides, and it may have unintended consequences for certain non-target soil species. Bioremediation cleans organic and inorganic contaminants using microbes and plants. Organophosphate-hydrolyzing enzymes can transform pesticide residues into non-hazardous byproducts and are increasingly being considered viable solutions to the problem of decontamination. When coupled with system analysis, the multi-omics technique produces important data for functional validation and genetic manipulation, both of which may be used to boost the efficiency of bioremediation systems. RNA-guided nucleases and RNA-guided base editors include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR), which are used to alter genes and edit genomes. The review sheds light on key knowledge gaps and suggests approaches to pesticide cleanup using a variety of microbe-assisted methods. Researches, ecologists, and decision-makers can all benefit from having a better understanding of the usefulness and application of systems biology and gene editing in bioremediation evaluations.

Harnessing CRISPR-Cas adaptation for RNA recording and beyond

  • Gyeong-Seok Oh;Seongjin An;Sungchul Kim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.40-49
    • /
    • 2024
  • Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNA-guided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies.

The Sanguinarine Apoptosis Induction of Hep3B Human Hepatocellular Carcinoma Cells is Dependent on the Activation of Caspase (Sanguinarine에 의한 Hep3B 인체 간암세포의 apoptosis 유도에 관한 연구)

  • Han, Min Ho;Choi, Sung Hyun;Hong, Su Hyun;Park, Dong Il;Choi, ung Hyun
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1340-1348
    • /
    • 2017
  • Sanguinarine is a benzophenanthridine alkaloid derived from the roots of Sanguinaria canadensis L., which is used for the purpose of treating various diseases. Although studies of anticancer activities have been performed using various cancer cell lines, the phenomenon of inducing apoptosis in cancer cells by using sanguinarine requires more research. Therefore, this study investigated the anti-cancer activities and related mechanisms of sanguinarine used with Hep3B human hepatocellular carcinoma cells in terms of the regulation of apoptosis. Sanguinarine inhibited the proliferation of Hep3B cells in a concentration-dependent manner, which was associated with the induction of apoptosis. Sanguinarine also increased the activity of caspase-3, which is a typical effector caspase, and the activities of caspase-8 and caspase-9, which are key when initiating extrinsic and intrinsic apoptosis pathways, respectively. In addition, sanguinarine increased the expression of death receptor-related genes and pro-apoptotic BAX, which belongs to the Bcl-2 family, while suppressing the expression of anti-apoptotic Bcl-2. Sanguinarine promoted the truncation of Bid and enhanced the release of cytochrome c from the mitochondria to the cytoplasm due to a loss of mitochondrial membrane potential. Furthermore, the reduction of a survival rate that was induced by sanguinarine and the induction of apoptosis disappeared with the inhibition of artificial caspase activity. Therefore, the results of the study indicated that sanguinarine-induced apoptosis in Hep3B cells involves both extrinsic and intrinsic pathways; such apoptosis is a caspase-dependent phenomenon.

The cloning and characterization of the small GTP-binding Protein RacB in rice.

  • Jung, Young-Ho;Jaw, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.81.2-82
    • /
    • 2003
  • Plants have evolved along with pathogens, and they have developed sophisticated defense systems against specific microorganisms to survive. G-protons are considered one of the upstream signaling components working as a key for the defense signal transduction pathway. For activation and inactivation of G-protein, GTP-biding proteins are involved. GTP -binding proteins are found in all organisms. Small GTP-binding proteins, having masses of 21 to 30kD, belong to a superfamily, often named the Ras supefamily because the founding members are encoded by human Ras genes initially discovered as cellular homologs of the viral ras oncogene. Members of this supefamily share several common structural features, including several guanine nucleotide binding domains and an effector binding domain. However, exhibiting a remarkable diversity in both structure and function. They are important molecular switches that cycle between the GDP-bound inactive form into the GTP-bound active form through GDP/GTP replacement. In addition, most GTP-binding proteins cycle between membrane-bound and cytosolic forms. such as the RAC family are cytosolic signal transduction proteins that often are involved in processing of extracellular stimuli. Plant RAC proteins are implicated in regulation of plant cell architecture secondary wall formation, meristem signaling, and defense against pathogens. But their molecular mechanisms and functions are not well known. We isolated a RacB homolog from rice to study its role of defense against pathogens. We introduced the constitutively active and the dominant negative forms of the GTP-hinging protein OsRacB into the wild type rice. The dominant negative foms are using two forms (full-sequence and specific RNA interference with RacB). Employing southern, and protein analysis, we examine to different things between the wild type and the transformed plant. And analyzing biolistic bombardment of onion epidermal cell with GFP-RacB fusion protein revealed association with the nucle.

  • PDF

Production of Knockout Mice using CRISPR/Cas9 in FVB Strain

  • Bae, Hee Sook;Lee, Soo Jin;Koo, Ok Jae
    • Journal of Embryo Transfer
    • /
    • v.30 no.4
    • /
    • pp.299-303
    • /
    • 2015
  • KO mice provide an excellent tool to determine roles of specific genes in biomedical filed. Traditionally, knockout mice were generated by homologous recombination in embryonic stem cells. Recently, engineered nucleases, such as zinc finger nuclease, transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats (CRISPR), were used to produce knockout mice. This new technology is useful because of high efficiency and ability to generate biallelic mutation in founder mice. Until now, most of knockout mice produced using engineered nucleases were C57BL/6 strain. In the present study we used CRISPR-Cas9 system to generate knockout mice in FVB strain. We designed and synthesized single guide RNA (sgRNA) of CRISPR system for targeting gene, Abtb2. Mouse zygote were obtained from superovulated FVB female mice at 8-10 weeks of age. The sgRNA was injected into pronuclear of the mouse zygote with recombinant Cas9 protein. The microinjected zygotes were cultured for an additional day and only cleaved embryos were selected. The selected embryos were surgically transferred to oviduct of surrogate mother and offsprings were obtained. Genomic DNA were isolated from the offsprings and the target sequence was amplified using PCR. In T7E1 assay, 46.7% among the offsprings were founded as mutants. The PCR products were purified and sequences were analyzed. Most of the mutations were founded as deletion of few sequences at the target site, however, not identical among the each offspring. In conclusion, we found that CRISPR system is very efficient to generate knockout mice in FVB strain.