• Title/Summary/Keyword: effectiveness evaluation uncertainties

Search Result 22, Processing Time 0.023 seconds

Design of an RCGA-based Linear Active Disturbance Rejection Controller for Ship Heading Control

  • Ahn, Jong-Kap;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.44 no.5
    • /
    • pp.423-429
    • /
    • 2020
  • A ship's automatic steering system is the basis for addressing control difficulties related to course-changing and course-keeping during navigation through heading angle control, and is a link in realizing unmanned and autonomous ships. This study proposes a robust RCGA-based linear active disturbance rejection controller (LADRC) design method considering environmental disturbances, measurement noise, and model uncertainties in designing a ship heading controller for use when the ship is sailing. The LADRC consisted of a transient profile, a linear extended state observer, and a PD controller. The control gains in the LADRC with the linear extended state observer were adjusted by RCGAs to minimize the integral of the time-weighted absolute error (ITAE), which is an evaluation function of the control system. The proposed method was applied to ship heading control, and its effectiveness was validated by comparing the propulsive energy loss between the proposed method and a conventional linear PD controller. The simulation results showed that the proposed method had the advantages of lower propulsive energy loss, more robustness, and higher tracking precision than the conventional linear PD controller.

A Study on the Allocation Method of Power System Reliability Level under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 전력계통 신뢰도 할당 방법에 관한 연구)

  • Kim, Hong-Sik;Lim, Chae-Hyeun;Choi, Jae-Seok;Lee, Sun-Young;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.394-396
    • /
    • 2000
  • This paper presents a new algorithm for the allocation of the reliability level of composite power system under deregulated electricity market. Under deregulated electricity market, it is required to establish a methodology that can evaluate supply cost and supply reliability of each demand to realize the available priority service reflected a preference of each customer. In this study, a concept of reliability differentiated electricity service as priority service to keep reliability of particular customer within a desirable level is proposed on HLII under deregulated competitive electricity market. The uncertainties of not only generators but also transmission lines are considered for the reliability evaluation in this study. The characteristics and effectiveness of this methodology are illustrated by the case studies on MRBTS and IEEE-RTS.

  • PDF

Economic Load Dispatch Considering Power System Reliability under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 전력계통 신뢰도를 고려한 경제부하배분)

  • Kim, Hong-Sik;Lim, Chae-Hyeun;Choi, Jae-Seok;Cha, Jun-Min;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.391-393
    • /
    • 2000
  • This paper presents an new algorithm for the economic load dispatch considering the reliability level constraints of composite power system under deregulated electricity market. It is the traditional ELD problem that generation powers have been dispatched In order to minimize total fuel cost subjected to constraints which sum of powers generated must equal the received load and no violating lower and upper limit constraints on generation. Under deregulated electricity market, however, generation powers of a pool have to be reallocated newly in order to satisfy the reliability differentiated level required at a load point because of a reliability differentiated electricity service which is a part of the priority service. In this study, new economic load dispatch algorithm for reallocating the generation powers of a pool in order to satisfy the reliability differentiated level under deregulated competitive electricity market is proposed. The uncertainties of not only generators but also transmission lines are considered fer the reliability evaluation. The characteristics and effectiveness of this methodology are illustrated by the case studies on MRBTS and IEEE-RTS.

  • PDF

Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법)

  • Kim, Hong-Sik;Moon, Seung-Pil;Choi, Jae-Seok;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.112-115
    • /
    • 2001
  • This paper illustrates a new nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed. In this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a test system.

  • PDF

Development of a New Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법의 개발)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok;No, Dae-Seok;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.431-439
    • /
    • 2001
  • This Paper illustrates a new numerical analysis method using a nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC(composite power system effective load duration curve) based on the new effective load model at HLll(Hierarchical Level H) has been developed also. The CMELDC can be obtained from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed in this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLll will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of MRBTS(Modified Roy Billinton Test System).

  • PDF

The Best Line Choice for Transmission System Expansion Planning on the Side of the Highest Reliability Level

  • Sungrok Kang;Trungtinh Tran;Park, Jaeseok;Junmin Cha;Park, Daeseok;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.84-90
    • /
    • 2004
  • This paper presents a new method for choosing the best line for transmission system expansion planning considering the highest reliability level of the transmission system. Conventional methodologies for transmission system expansion planning have been mainly focused on economics, which is the minimization of construction costs. However, quantitative evaluation of transmission system reliability is important because successful operation and planning of an electric power system under the deregulated electricity market depends on transmission system reliability management. Therefore, it is expected that the development of methodology for choosing the best lines considering the highest transmission system reliability level while taking into account uncertainties of transmission system equipment is useful for the future. The characteristics and effectiveness of the proposed methodology are illustrated by the case study using a MRBTS.

Dependence assessment in human reliability analysis under uncertain and dynamic situations

  • Gao, Xianghao;Su, Xiaoyan;Qian, Hong;Pan, Xiaolei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.948-958
    • /
    • 2022
  • Since reliability and security of man-machine system increasingly depend on reliability of human, human reliability analysis (HRA) has attracted a lot of attention in many fields especially in nuclear engineering. Dependence assessment among human tasks is a important part in HRA which contributes to an appropriate evaluation result. Most of methods in HRA are based on experts' opinions which are subjective and uncertain. Also, the dependence influencing factors are usually considered to be constant, which is unrealistic. In this paper, a new model based on Dempster-Shafer evidence theory (DSET) and fuzzy number is proposed to handle the dependence between two tasks in HRA under uncertain and dynamic situations. First, the dependence influencing factors are identified and the judgments on the factors are represented as basic belief assignments (BBAs). Second, the BBAs of the factors that varying with time are reconstructed based on the correction BBA derived from time value. Then, BBAs of all factors are combined to gain the fused BBA. Finally, conditional human error probability (CHEP) is derived based on the fused BBA. The proposed method can deal with uncertainties in the judgments and dynamics of the dependence influencing factors. A case study is illustrated to show the effectiveness and the flexibility of the proposed method.

RC structural system control subjected to earthquakes and TMD

  • Jenchung Shao;M. Nasir Noor;P. Ken;Chuho Chang;R. Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.213-223
    • /
    • 2024
  • This paper proposes a composite design of fuzzy adaptive control scheme based on TMD RC structural system and the gain of two-dimensional fuzzy control is controlled by parameters. Monitoring and learning in LMI then produces performance indicators with a weighting matrix as a function of cost. It allows to control the trade-off between the two efficiencies by adjusting the appropriate weighting matrix. The two-dimensional Boost control model is equivalent to the LMI-constrained multi-objective optimization problem under dual performance criteria. By using the proposed intelligent control model, the fuzzy nonlinear criterion is satisfied. Therefore, the data connection can be further extended. Evaluation of controller performance the proposed controller is compared with other control techniques. This ensures good performance of the control routines used for position and trajectory control in the presence of model uncertainties and external influences. Quantitative verification of the effectiveness of monitoring and control. The purpose of this article is to ensure access to adequate, safe and affordable housing and basic services. Therefore, it is assumed that this goal will be achieved in the near future through the continuous development of artificial intelligence and control theory.

Evaluation of Robust Performance of Fuzzy Supervisory Control Technique (퍼지관리제어기법의 강인성능평가)

  • Ok, Seung-Yong;Park, Kwan-Soon;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.41-52
    • /
    • 2005
  • Using the variable control gain scheme on the basis of fuzzy-based decision-making process, Fuzzy supervisory control (FSC) technique exhibits better control performance than linear control technique with one static control gain. This paper demonstrates the effectiveness of the FSC technique by evaluating the robust performance of the FSC technique under the presence of uncertainties in the models and the excitations. Robust performance of the FSC system is compared with that of optimally designed LQG control system for the benchmark cable-stayed bridge presented by Dyke et al. Parameter studies on the robust performance evaluation are carried out by varying the stiffness of the bridge model as well as the magnitudes of several earthquakes with different frequency contents. From the comparative study of two control systems, FSC system shows the enhanced control performance against various magnitudes of several earthquakes while maintaining lower level of power required for controlling the bridge response. Especially, FSC system clearly guarantees the improved robust performance of the control system with stable reduction effects on the seismic responses and slight increases in total power and stroke for the control system, while LQG control system exhibits poor robust performance.

Economic Evaluation and Budget Impact Analysis of the Surveillance Program for Hepatocellular Carcinoma in Thai Chronic Hepatitis B Patients

  • Sangmala, Pannapa;Chaikledkaew, Usa;Tanwandee, Tawesak;Pongchareonsuk, Petcharat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8993-9004
    • /
    • 2014
  • Background: The incidence rate and the treatment costs of hepatocellular carcinoma (HCC) are high, especially in Thailand. Previous studies indicated that early detection by a surveillance program could help by down-staging. This study aimed to compare the costs and health outcomes associated with the introduction of a HCC surveillance program with no program and to estimate the budget impact if the HCC surveillance program were implemented. Materials and Methods: A cost utility analysis using a decision tree and Markov models was used to compare costs and outcomes during the lifetime period based on a societal perspective between alternative HCC surveillance strategies with no program. Costs included direct medical, direct non-medical, and indirect costs. Health outcomes were measured as life years (LYs), and quality adjusted life years (QALYs). The results were presented in terms of the incremental cost-effectiveness ratio (ICER) in Thai THB per QALY gained. One-way and probabilistic sensitivity analyses were applied to investigate parameter uncertainties. Budget impact analysis (BIA) was performed based on the governmental perspective. Results: Semi-annual ultrasonography (US) and semi-annual ultrasonography plus alpha-fetoprotein (US plus AFP) as the first screening for HCC surveillance would be cost-effective options at the willingness to pay (WTP) threshold of 160,000 THB per QALY gained compared with no surveillance program (ICER=118,796 and ICER=123,451 THB/QALY), respectively. The semi-annual US plus AFP yielded more net monetary benefit, but caused a substantially higher budget (237 to 502 million THB) than semi-annual US (81 to 201 million THB) during the next ten fiscal years. Conclusions: Our results suggested that a semi-annual US program should be used as the first screening for HCC surveillance and included in the benefit package of Thai health insurance schemes for both chronic hepatitis B males and females aged between 40-50 years. In addition, policy makers considered the program could be feasible, but additional evidence is needed to support the whole prevention system before the implementation of a strategic plan.