• Title/Summary/Keyword: effective water storage

Search Result 446, Processing Time 0.032 seconds

Effect of Green Tea and Lotus Leaf Boiled Water Extracts Treatment on Quality Characteristics in Salted Mackerel during Storage (녹차 및 연잎 열수추출물 처리가 염장고등어의 저장 중 품질특성에 미치는 영향)

  • Nam, Ki-Ho;Jang, Mi-Soon;Lee, Doo-Seog;Yoon, Ho-Dong;Park, Hee-Yeon
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.643-650
    • /
    • 2011
  • This study was carried out to analyze the quality change of mackerel treated of green tea and lotus leaf boiled water extracts. And investigate the antioxidant effects of them on the lipid peroxidation of mackerel during storage at $4^{\circ}C$ for 28 days. It was estimated periodical measurements of proximate composition, pH, carbonyl, volatile basic nitrogen, trimethylamine-N, acid, peroxide and thiobarbituric acid values. It had no effect on proximate composition compared with non- treated control nearly but, pH of all the samples was increase during 28 days continuously. The contents of volatile basic nitrogen and trimethylamine-N lower than control during storage. Also, acid, peroxide and thiobarbituric acid values of mackerel treated of green tea and lotus leaf boiled water extracts were significantly lower than control throughout storage period. Especially, mackerel treated of 2% green tea and lotus leaf boiled water extracts shows that more effective than 1% of things in antioxidant during storage. Results indicate that the application of green tea and lotus leaf boiled water extract on the surface of mackerel may be useful to lower the rancidity degree and fish odor during storage.

Experimental Study on the Effective Use of Thermally Stratified Hot Water Storage System (열성층 온수저장시스템의 효율적 이용에 관한 실험적 연구)

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.45-52
    • /
    • 1993
  • The benefits of thermal stratification in sensible heat storage were investigated for residential solar applications. The effect of increased thermal useful efficiency of hot water stored in an actual storage tank due to stratification has been discussed and illustrated through experimental data and computer simulation, which were taken by changing dynamic and geometric parameters. When the flow rate was 8 liter/min and ${\Delta}T=40^{\circ}C$ was $40^{\circ}C$, the useful efficiency(${\eta}_u$) was about 90% in case of using a distributor, but not using a distributor the useful efficiency(${\eta}_u$) was about 82%. So these kinds of distributor would be recommendable for a hot water storage system and residential solar energy application to increase useful efficiency(${\eta}_u$). In the case of the uniform circular distributor, when the flow rate was 8 liter/min partial mixing was decreased and a stable stratification was obtained. Furthermore, if the distrbutor was manufactured so that the flow is to be the same from all perforations in order to enhance stratification, it might be predicted that further stable stratification and higher useful efficiency(${\eta}_u$) are obtainable.

  • PDF

Effects of Chlorine Water and Plasma Gas Treatments on the Quality and Microbial Control of Latuca indica L. Baby Leaf Vegetable during MA Storage (염소수와 플라즈마 가스 처리가 왕고들빼기 어린잎채소의 MA저장 중 품질과 미생물 제어에 미치는 영향)

  • Kim, Ju Young;Han, Su Jeong;Whang, Lixia;Lee, Joo Hwan;Choi, In-Lee;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.197-203
    • /
    • 2019
  • This study was carried out to investigate the effect of chlorine water and plasma gas treatment on the quality and microbial control of Latuca indica L. baby Leaf during storage. Latuca indica L. baby leaves were harvested from a plant height of 10cm. They were sterilized with $100{\mu}L{\cdot}L^{-1}$ chlorine water and plasma-gas (1, 3, and 6hours), and packaged with $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ films and then stored at $8{\pm}1^{\circ}C$ and RH $85{\pm}5%$ for 25days. During storage, the fresh weight loss of all treatments were less than 1.0%, and the carbon dioxide and oxygen concentrations in packages were 6-8% and 16-17%, respectively for all treatments in the final storage day. The concentration of ethylene in the packages fluctuated between $1-3{\mu}L{\cdot}L^{-1}$ during the storage and the highest concentration of ethylene was observed at 6 hours plasma treatment in the final storage day. The off-odor of all treatments were almost odorless, the treatments of chlorine water and 1 hour plasma maintained the marketable visual quality until the end of storage. Chlorophyll content and Hue angle value measured at the final storage day were similar to those measured before storage in chlorine water and 1 hour of plasma treatments. E. coli was not detected immediately after sterilization in all sterilization treatments. After 6 hours of plasma treatment, the total bacteria fungus counts were lower than the domestic microbial standard for agricultural product in all sterilization treatments. The total aerobic counts in the end storage day increased compared to before storage, whereas E. coli was not detected in all sterilization treatments. The sterilization effect against bacteria and fungi was the best in chlorine water treatment. Plasma treatment showed sterilization effects, but within a prolonged period of time. In addition, the sterilization effect decreased gradually. These results suggest that chlorine water and plasma treatment were effective in maintaining Latuca indica L. baby Leaf commerciality and controlling microorganisms during postharvest storage.

Liquefaction Evaluation by One-Dimensional Effective Stress Analysis Using UBC3D-PLM Model (UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가)

  • Jung-Hoe Kim;Hyun-Sik Jin
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.151-167
    • /
    • 2023
  • This study compares the revised method in loose saturated sandy ground where the LNG storage tank will be installed with an evaluation method by one-dimensional effective stress analysis using the UBC3D-PLM model. Various laboratory and field tests were conducted to establish the parameters necessary for evaluation. The revised liquefaction evaluation method using the seismic response analysis result and N value from standard penetration testing evaluated the possibility of liquefaction as high, but assessment using effective stress analysis, which can consider various liquefaction resistance factors, found the site to be somewhat stable against liquefaction. One-dimensional finite element analysis using UBC3D-PLM modeling facilitated easier assessment of stability against liquefaction than the other methods and minimized the area required for reinforcement against liquefaction. In addition, it is expected that two-and three-dimensional numerical analysis considering the foundation of the LNG storage tank can identify the seismic design and behavior when liquefaction occurs.

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.

Effects of Processing Conditions on the Protein Quality of Fried Anchovy Kamaboko Engraulis japonica

  • Ramos, Leny R. Ordonez;Choi, Nam-Do;Ryu, Hong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.265-273
    • /
    • 2012
  • The effects of processing and frozen storage conditions on the quality of anchovy Engraulis japonica fried surimi gels were investigated. Protein content decreased after surimi gel processing from 19.6% (raw meat) to 12.1% (kamaboko) due to the added ingredients and change in water content. Lipid content decreased from 2.8% (raw meat) to 1.3% in minced and 0.5% in surimi, but fried kamaboko showed a 6.9 % lipid level. Thiobarbituric acid values and thiobarbituric acid reactive substances levels were highest in kamaboko samples, 89.5 and 1.9 mg/g solid, and increased gradually with storage time to 101.8 and 4.6 mg/g solid, respectively. In vitro protein digestibility increased from 79.2% in raw anchovy to 88.5% in kamaboko samples. Levels of trypsin inhibitor decreased gradually with processing and during storage time from 2.43 in raw anchovy to 0.31 mg/g solid in the kamaboko sample after 60 days of frozen storage. No noticeable changes in total essential amino acid was observed during processing conditions. Computed protein efficiency ratio for kamaboko was highest (2.59) compared with whole anchovy (1.96), minced (1.94) and surimi (2.50). Fresh fried anchovy kamaboko showed similar values of hardness, springiness, gumminess and chewiness to commercial surimi gel, but a higher values were seen for fracturability and adhesiveness, and lower values for cohesiveness and resilience. The frozen and thawed anchovy kamaboko showed higher values for all of these rheological parameters compared with fresh and commercial kamaboko. Anchovy kamaboko showed the lowest lightness (62.9) and redness (0.16) and similar yellowness (11.9) compared with commercial kamaboko. Frozen storage and vacuum packaging were effective maintaining the shelf life of anchovy kamaboko within 30 days, but were not effective after 45 days due to fat oxidation.

Application of Storage Function Method with SCS Method (SCS 초과우량산정방법을 이용한 저류함수법 적용)

  • Kim, Tae-Gyun;Yoon, Kang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.449-453
    • /
    • 2007
  • Has been being operated since 1974, recently, the flood forecasting and warning system is applied in almost all the rivers in Korea, and the Storage Function Method(SFM) is used for flood routing. The SFM which was presented by Toshimitsu Kimura(1961) routes floods in channels and basins with the storage function as the basic equation. A watershed is devided into two zone, runoff and percolation area and Runoff is occured when cumulated rainfall is not exceed saturation rainfall, but exceed, runoff is occured from percolation area, too. Runoff area is given and not changed, runoff ratio is constant. In routing process, runoff from runoff and percolation area is routed seperately with nonlinear cenceptual reservior having same characteristics and it is unreasonable assumption. Modified SFM is proposed with storage function and continuity Equation which has no assumption for routing process and effective rainfall is calculated by SCS Method. For Wi Stream, comparision of Kimura and Modified SFM is conducted and It could be seen that Modified SFM is more improvemental and easily applicable method.

  • PDF

Multiple Regression Equations for Estimating Water Supply Capacities of Dams Considering Influencing Factors (영향요인을 고려한 댐 용수공급능력 추정 회귀모형)

  • Kang, Min Goo;Lee, Gwang Man
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1131-1141
    • /
    • 2012
  • In this study, factors that influence water supply capacities of dams are extracted using factor analysis, and multiple regression equations for estimating water supply capacities of dams are developed using the analysis results. Twenty-one multi-purpose dams and twelve Municipal and Industrial (M&I) water supply dams are selected for case studies, and eight variables influencing water supply capacities of dams, namely: watershed area, inflow, effective reservoir storage, grade on amount of M&I water supply, grade on amount of agricultural water supply, grade on amount of in-stream flow supply, grade on river administration, and grade on average rainfall, are determined. Two case studies for multi-purpose dams and M&I water supply dams are performed, employing factor analysis, respectively. For the two cases, preliminary tests, such as reviewing matrix of correlation coefficient, Bartlett's test of sphericity, and Kaiser-Meyer-Olkin (KMO) test, are conducted to evaluate the suitability of the variables for factor analysis. In case of multi-purpose dams, variables are grouped into three factors; M&I water supply dams, two factors. The factors are rotated using Varimax method, and then factor loading of each variable is computed. The results show that the variables influencing water supply capacities of dams are reasonably selected and appropriately grouped into factors. In addition, multiple regression equations for predicting the amounts of annual water supply of dams are established using the factor scores as explanatory variables, it is identified that the models' accuracies are high, and their applications to determining effective storage capacity of a dam during dam planning and design steps are presented. Consequently, it is thought that the variables and factors are useful for dam planning and dam design.

The Simulation of Runoff Reduction by the Storage Type of Zermeable Concrete Block Paving on Andong Maskdance Festival Square (저류형 투수블록 설치를 통한 안동국제탈춤광장 유출량 저감효과 모의)

  • Park, Sung Ki;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.293-300
    • /
    • 2018
  • Ihe purpose of this study is to evaluate the effects the storage type of permeable concrete block paving (ST-PCBP) have on runoff reduction and infiltration increasement at Andong Maskdance Festival Square. This was accomplished using the NRCS-curve number method over the last 10 years. Two different scenarios were developed in this study for low impact development (LID) design. For the $1^{st}$ scenario, the walking path and parking lot were install using the ST-PCBP and runoff from the inline skating rink ($3,808m^2$) and lawn ($11,191m^2$) were routed to the ST-PCBP, but the rooftop runoff flowed into the storm water drainage system. For the $2^{nd}$ scenario, one of the non-structural BMPs, disconnected impervious surface (DIS), was applied so additional runoff from rooftop would enter the ST-PCBP. It was determined that ST-PCBP could significantly reduce surface runoff from the study area and increase infiltration with 71% and 88% of surface runoff reduction and 151% and 215% of infiltration increasement for scenarios 1 and 2, respectively. The effect of LID in the $2^{nd}$ scenario was better than the $1^{st}$ scenario, therefore DIS in conjunction with ST-PCBP could be a more cost-effective LID application.

Long-term Prediction of Dam Sedimentation Using Sluicing Efficiency Curve and Dam Operation Technique (배사비 효율곡선 및 댐 운영기법을 이용한 퇴사량 장기 예측)

  • Lee, Gwang-Man
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.95-103
    • /
    • 1998
  • Dam sediment can be predicted from the two methods: the one is a physical analysis based on the hydrjulic mechanism and the other is an empirical approach using observed data as a design factor. The former can be used to estimate short-term phenomena by mathematical methods. the latter can be used for deriving long-term design parameters such as dead storage calculation. Monthly reservoir operation is possible with the sluicing efficiency curve based on empirical data. The optimal sediment management can be carried out using the information variable which traces deposit sediments corresponding to the reservoir storage. The idea can provide an optimal operation strategy to save effective storage varying with time. This study presents a methodology for the long-term sediment prediction using sluicing efficiency curve. An application is conducted for estimating accumulated sedment deposit and water supply capability ofr the Fenhe dam in the Yellow rever of China.

  • PDF