• Title/Summary/Keyword: effective vibration length

Search Result 93, Processing Time 0.025 seconds

Evaluation of Dynamic Characteristics of Rubber Materials Using a Double Cantilever Sandwich Beam Method (양팔 샌드위치보 시험법에 의한 EPDM고무의 동특성 평가 연구)

  • Kim, Kwang-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1393-1400
    • /
    • 2002
  • A double cantilever sandwich-beam method has been applied to the evaluation of the frequency dependence of dynamic elastic modulus and material loss factor of EPDM rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Effects of the rubber layer length on the dynamic characteristics were also investigated: reliable values were measured when the length of the inserted rubber layer was larger than and equal to 50% of the effective specimen length. The values were compared with those obtained by the dynamic mechanical analysis and the simple resonant test. Relationships of the dynamic characteristics of rubbers with frequency could be determined using the least square error method.

A Study on the Crack Behaviour of the Concrete Gravity Dam (콘크리트 중력댐의 균열거동에 관한 연구)

  • 장희석;손병락;김희성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.353-362
    • /
    • 1999
  • This study is aimed to obtain the critical crack lengthes of the concrete gravity dam and to investigate variation of the effective stress intensity factors at the crack tips of multiple cracks. Applied loads are dynamic load composed of blast vibration and hydrodynamic pressure which can be considered in case of the blast work at near construction site, in addition to static load composed of hydrostatic pressure, crack pressure, and gravity load of the dam. The critical crack lengthes were calculated according to the crack locations, directions, and magnitudes of blast vibration. Also variation of the effective stress intensity factors with respect to the multiple crack shapes and distances between the crack tips was investigated.

  • PDF

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

Proposition to Natural Frequency of Liquid Column Vibration Absorber with Vertical-Horizontal Area Ratio (수직-수평부 단면적비에 따른 동조액체기둥형 감쇠장치의 고유진동수 산정식 제안)

  • Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan;Lee, Joung-Woo;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.653-658
    • /
    • 2008
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA has a different value compared with calculated one. The effective length($L_e$) was revised using by power equation. In the Case01 to 19, the standard deviation($s_r$) is 4.7292 and the coefficient of correlation(r) is 0.9856. In the Case21 to 61, the standard deviation ($s_r$) is 14.2143 and the coefficient of correlation(r) is 0.9935. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

  • PDF

Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes

  • Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.207-223
    • /
    • 2018
  • In this inquisition, a passive damper namely Stockbridge Damper (SBD) has been introduced to the field of vibration control of Offshore Wind Turbine (OWT) to reduce the earthquake excitations. The dynamic responses of the structure have been analyzed for three recorded earthquakes and the responses have been assessed. To find an optimum SBD, the parameters of damper have been optimized using Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) and Particle Swarm Optimization (PSO). The influence of the design variables of SBD such as the diameter of messenger cable, the length of messenger cable and logarithmic decrement of the damping has been investigated through response variables such as maximum displacement, RMS displacement and frequency amplitude of structure under an artificially generated white noise. After that, the structure with optimized and non-optimized damper has been analyzed with under the same earthquakes. Moreover, the comparative results show that the structure with optimized damper is 11.78%, 18.71%, 11.6% and 7.77%, 7.01%, 10.23% more effective than the structure with non-optimized damper with respect to the displacement and frequency response under the earthquakes. The results show that the SBD can obviously affect the characteristics of the vibration of the OWT and RSM based on BBD and PSO approach can provide an optimum damper.

A Study on Notch Bit System for Controlling Blast Vibration and Over-break in Rock Mass (발파공해 해소 및 여굴 최소화를 위한 선균열 암굴착 노치장비 개발에 관한 연구)

  • Jeong, Dong-Ho;Moon, Sang-Jo;An, Dae-Jin;Jeong, Won-Joon;Kim, Eun-Kwan;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.216-224
    • /
    • 2007
  • Blasting, using shock and dynamic energy of explosive, is very effective tunnel excavation method. But it had serious problem which is the blast vibration and over-break. In recent study, pre-cracked excavation method using notch hole reduced blast vibration and over-break in tunnel, so we performed study about developing notch bit system for making notch hole. In order to make notch hole effectively we had perform drilling experiments changing length and height of notch and in order to improve speed and precision of drilling we had developed notch bit system which consists of drilling bit, notch bit, adapter and notch guide.

Proposition to Natural Frequency of Liquid Column Vibration Absorber with Vertical-horizontal Area Ratio (수직-수평부 단면적비에 따른 동조액체기둥형 감쇠장치의 고유진동수 산정식 제안)

  • Woo, Sung-Sik;Chung, Lan;Lee, Joung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA has a different value compared with calculated one. The effective length($L_e$) was revised using by power equation. In the case01 to 19, the standard deviation($S_r$) is 4.7292 and the coefficient of correlation(r) is 0.9856. In the case21 to 61, the standard deviation($S_r$) is 14.2143 and the coefficient of correlation(r) is 0.9935. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells

  • R. Bina;M. Soltani Tehrani;A. Ahmadi;A. Ghanim Taki;R. Akbarian
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.487-499
    • /
    • 2024
  • The primary objective of this study is to analyze the free vibration behavior of a sandwich cylindrical shell with a defective core and wavy carbon nanotube (CNT)-enhanced face sheets, utilizing the three-dimensional theory of elasticity. The intricate equations of motion for the structure are solved semi-analytically using the generalized differential quadrature method. The shell structure consists of a damaged isotropic core and two external face sheets. The distributions of CNTs are either functionally graded (FG) or uniform across the thickness, with their mechanical properties determined through an extended rule of mixture. In this research, the conventional theory regarding the mechanical effectiveness of a matrix embedding finite-length fibers has been enhanced by introducing tube-to-tube random contact. This enhancement explicitly addresses the progressive reduction in the tubes' effective aspect ratio as the filler content increases. The study investigates the influence of a damaged matrix, CNT distribution, volume fraction, aspect ratio, and waviness on the free vibration characteristics of the sandwich cylindrical shell with wavy CNT-reinforced face sheets. Unlike two-dimensional theories such as classical and the first shear deformation plate theories, this inquiry is grounded in the three-dimensional theory of elasticity, which comprehensively accounts for transverse normal deformations.

A study on the viscous torsional vibration damper in a high speed diesel engine (고속디이젤 기관의 점성비틀림 진동댐퍼에 관한 연구)

  • 한영출
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.20-30
    • /
    • 1982
  • Recent diesel engine has achieved high speed running comparable to that of gasoline engine as a speed improvement effort. Consequently, torsional vibration of high-speed diesel engine induced vibration nosise, reduced horsepower and the like. Viscous damper which is thought to be effective in curtailing the torsional vibration was studied over a wide range of speed. In this investigation, a water cooling, 4-cycle high-speed diesel engine(Msx. 3500 rpm)was used for the study. Theoretical analysis was made by assuming the engine to be an ideal equivalent system(length, moment of inertia) i. e. the multi-degree of freedom equivalent torsional vibration system with damper was analyzed. In the analysis, the inertia moment of suitable damper for this experiment was calculated by varying the relative damping coefficient of damper of engine for each damper. Furthermore, in the torsional vibration experiment, the torsional vibration amplitude of the crankshaft system was measured when the engine was equipped with dampers of different moments of inertia and also when the engine was equipped without dampers. The experimental results were compared with the analytical values and were found to be satisfied. The results of this investigation are summarized below; (1) It was found that for the engine equipped with dampers, the torsional vibration amplitude was reduced to about one third of those without dampers. (2) The optimum value of inertia moment of viscous damper for the engine was found to be about Id=1.05(kg.cm.s$^{2}$) (3) The optimum damping coefficient and the ratio of moment of inertia for the engine were found to be about Ca= 850(kg.cm.s), Rd=0.509, respectively (b1 dapmper).

  • PDF

The Robust Design with Column Merging Method for the Optimal Design of Low Noise Intake System (강건설계와 열합병법을 이용한 세분화한 흡기계 저소음 최적설계)

  • 오재응;차경준;한정순;박영선;진정언
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.773-784
    • /
    • 2002
  • This paper proposes an optimal design to improve the performance of the intake system by reducing the noise. We adapt the Taguchi method and column merging method for the above design. At the first stage of the design, the length and radius of each component of the current intake system are selected as control factors. Then the $L^{18}$ table of orthogonal array is used to get the effective main factors. At the second stage, the $L^{16}$ table of orthogonal array and the column merging method is combined to analyze subdivided significant factors. We know that the robust design with the column merging method provides better design for noise of intake system than the robust design itself.