• Title/Summary/Keyword: effective stiffness

Search Result 1,071, Processing Time 0.026 seconds

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints (부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.143-154
    • /
    • 2014
  • An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

Evaluation of Subgrade Stiffness using Pressuremeter Test (공내재하시험에 의한 포장하부기초 강성도 평가)

  • Lim, Yu-Jin;Hai, Nguyen Tien;Jang, Duk-Sun
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.25-36
    • /
    • 2004
  • The pressuremeter test can be used as an effective tool for evaluating stiffness of lower pavement layers including subgrade and subbase. At present, the most practical and applicable methods for evaluation of the stiffness of the subgrade and subbase are PBT and CBR in Korea. However, these methods have inherent drawbacks and large variabilities of test results themselves. In this study, an evaluation method and a test procedure that can be used for decision of pavement stiffness using pressuremeter were developed. The obtained results representing stiffness of the subgrade and subbase can replace PBT's soil reaction value k and CBR in design methods. It is found that the developed procedure based on the pressuremeter can provide an effective correaltion between the PBT's soil reaction value k and PMT's reloading modulus ($E_R$).

  • PDF

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.

Minimum dynamic response of cantilever beams supported by optimal elastic springs

  • Aydin, Ersin
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.377-402
    • /
    • 2014
  • In this study, optimal distribution of springs which supports a cantilever beam is investigated to minimize two objective functions defined. The optimal size and location of the springs are ascertained to minimize the tip deflection of the cantilever beam. Afterwards, the optimization problem of springs is set up to minimize the tip absolute acceleration of the beam. The Fourier Transform is applied on the equation of motion and the response of the structure is defined in terms of transfer functions. By using any structural mode, the proposed method is applied to find optimal stiffness and location of springs which supports a cantilever beam. The stiffness coefficients of springs are chosen as the design variables. There is an active constraint on the sum of the stiffness coefficients and there are passive constraints on the upper and lower bounds of the stiffness coefficients. Optimality criteria are derived by using the Lagrange Multipliers. Gradient information required for solution of the optimization problem is analytically derived. Optimal designs obtained are compared with the uniform design in terms of frequency responses and time response. Numerical results show that the proposed method is considerably effective to determine optimal stiffness coefficients and locations of the springs.

Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table (공압제진대용 이중챔버형 공압스프링의 복소강성 모형화)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.

Effective Length of Reinforced Concrete Columns in Braced Frames

  • Tikka, Timo K.;Mirza, S. Ali
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.99-116
    • /
    • 2014
  • The American Concrete Institute (ACI) 318-11 permits the use of the moment magnifier method for computing the design ultimate strength of slender reinforced concrete columns that are part of braced frames. This computed strength is influenced by the column effective length factor K, the equivalent uniform bending moment diagram factor $C_m$ and the effective flexural stiffness EI among other factors. For this study, 2,960 simple braced frames subjected to short-term loads were simulated to investigate the effect of using different methods of calculating the effective length factor K when computing the strength of columns in these frames. The theoretically computed column ultimate strengths were compared to the ultimate strengths of the same columns computed from the ACI moment magnifier method using different combinations of equations for K and EI. This study shows that for computing the column ultimate strength, the current practice of using the Jackson-Moreland Alignment Chart is the most accurate method for determining the effective length factor. The study also shows that for computing the column ultimate strength, the accuracy of the moment magnifier method can be further improved by replacing the current ACI equation for EI with a nonlinear equation for EI that includes variables affecting the column stiffness and proposed in an earlier investigation.

Correlation between Strut Preloading and Earth Retaining Structures in Braced Excavations (버팀굴착시 버팀대 선행하중과 흙막이 구조물과의 상호 관계)

  • 오성남;조현태;박기태;양구승
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.129-136
    • /
    • 1999
  • The use of strut preloading method is gradually increasing in braced excavations in Korea. And it is necessary to analyse the effects of strut preloading on the wall deflection, bending moment and strut axial force etc. In this study, by using the analysis method of beams on elasto-plastic foundations, parametric studies of correlation between preloading and earth retaining structures in sandy soils were peformed in strut preloading application. As results, about 50% of design strut load was effective as a preloading force in considering the displacement and member forces of structures. And at least the effective stiffness of strut should be over 25% of the ideal value in order to restrain the excessive increase of wall deflection and bending moments. In order to protect excessive movements in braced excavation, to preload the strut was rather effective way than to increase the stiffness of strut and braced wall, but the excessive axial force of strut should be checked simultaneously.

  • PDF

Three-dimensional effective properties of layered composites with imperfect interfaces

  • Sertse, Hamsasew;Yu, Wenbin
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.639-650
    • /
    • 2017
  • The objective of this paper is to obtain three-dimensional (3D) effective properties for layered composites with imperfect interfaces using mechanics of structure genome. The imperfect interface is modeled using linear traction-displacement model that allows small infinitesimal displacement jump across the interface. The predictions obtained from the current analysis are compared with the 3D finite element analysis (FEA). In this study, it is found that the present model shows excellent agreement with the results obtained using 3D FEA by employing periodic boundary conditions. The prediction also reveals that in-plane longitudinal and shear moduli, and all Poisson's ratios are observed to be not affected by the interfacial stiffness while the predictions of transverse longitudinal and shear moduli are significantly influenced by interfacial stiffness.

A Study on the Application of the Steering Control to Increase Roll Stiffness for the Relatively Tall Vehicles (무게중심이 높은 차량의 롤 강성계수 증대를 위한 스티어링 제어기법의 응용에 관한 연구)

  • 소상균;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • For the high center of gravity vehicles the roll stiffness of their suspensions is arranged to be very high because such vehicles are in some danger of tipping over in cornering. In some cases, the effective roll stiffness is determined significantly by the compliance of the tires because of the very stiff anti-roll members incorporated in the suspension. In such cases, it is clear that the shock absorbers which may be effective in damping heave oscillations have little effect on roll oscillations. Therefore, wind gusts and roadway unevenness may cause large swaying oscillations. In this paper, to improve the stability for the high center of gravity vehicles a control scheme to augment the damping of the roll mode is proposed. As the feedback signals needed to provide damping of the roll motion, the front or rear steer angles or both are chosen because they are very related to roll motion. The scheme is effective from moderate to high speeds and stabilizes the roll mode without introducing disturbance moments from roadway unevenness as shock absorbers do. The validity on the proposed method is verified through the computer simulation.

  • PDF

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.