• Title/Summary/Keyword: effective stiffness

Search Result 1,079, Processing Time 0.027 seconds

In-Structure Response Spectra of Seismically Isolated Shear Buildings Considering Eccentricity Effect (면진된 전단 거동 구조물의 층응답스펙트럼에 대한 편심효과)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • For important structures such as nuclear power plants, In-Structure Response Spectrum (ISRS) analysis is essential because it evaluates the safety of equipment and components installed in the structure. Because most structures are asymmetric, the response can be affected by eccentricity. In the case of seismically isolated structures, this effect can be greater due to the difference between the center of mass of the structure and the center of rigidity of the isolator layer. Therefore, eccentricity effects must be considered when designing or evaluating the ISRS of seismically isolated structures. This study investigated the change of the ISRS of an isolated structure by assuming accidental eccentricity. The variables that affect the ISRS of the isolated structure were analyzed to see what additional impact they had due to eccentricity. The ISRS of the seismically isolated structure with eccentricity was amplified more than when there was non-eccentricity, and it was boosted more significantly in specific period ranges depending on the isolator's initial stiffness and seismic intensity. Finally, whether the displacement requirement of isolators can be applied to the variation of the ISRS due to eccentricity in the design code was also examined.

A study on the prediction of the mechanical properties of nanoparticulate composites using homogenization method with effect interface concept (유효계면 모델과 균질화 기법을 이용한 나노입자 복합재의 역학적 물성 예측에 관한 연구)

  • Jang, Seong-Min;Yang, Seung-Hwa;Yu, Su-Young;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.684-689
    • /
    • 2008
  • In this study, homogenization method combined with the effective interface model for the characterization of properties of the nanoparticulate composites is developed. In order to characterize particle size effect of nanocomposites, effective interface model has been developed. The application range of analytical micromechanics approach is limited because a simple analytical approach is valid only for simple and uniform geometry of fiber particles. Therefore this study focuses on the analysis of mechanical properties of the effect interface through the continuum homogenization method instead of using analytical micromechanics approach. Using the homogenization method, elastic stiffness properties of the effective interface are numerically evaluated and compared with the analytically obtained micromechanics solutions. The suggested homogenization method is expected to be applied to optimization problems for nanocomposite design.

  • PDF

A New Model to Predict Effective Elastic Constants of Composites with Spherical Fillers

  • Kim, Jung-Yun;Lee, Jae-Kon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1891-1897
    • /
    • 2006
  • In this study, a new model to predict the effective elastic constants of composites with spherical fillers is proposed. The original Eshelby model is extended to a finite filler volume fraction without using Mori-Tanaka's mean field approach. When single filler is embedded in the matrix, the effective elastic constants of the composite are computed. The composite is in turn considered as a new matrix, where new single filler is again embedded in the matrix. The predicted results by the present model with a series of embedding procedures are compared with those by Mori-Tanaka, self-consistent, and generalized self-consistent models. It is revealed through parametric studies such as stiffness ratio of the filler to the matrix and filler volume fraction that the present model gives more accurate predictions than Mori-Tanaka model without using the complicated numerical scheme used in self-consistent and generalized self-consistent models.

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(I) - Analysis by Isotropic Loading Test - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(I) - 등방재하시험에 의한 분석 -)

  • 임성훈;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.126-136
    • /
    • 2003
  • The B value on the saturated soil is commonly known as the amount of 1. Usually this concept is consistent with the condition that effective stress is equal to zero, but it was reported in some literatures that the B value was less than 1 in spite of saturated condition in the test of very stiff material such as rock and quasi-stiff material on which the stiffness can be mobilized because of effective stress not equal to zero. In this study the B value was measured on various effective stress conditions on normally consolidated clay. The test results in the B value less than 1 in spite of perfect saturation. The measured excessive pore water pressure was not only smaller than the change of the total stress, but also the function of time on clay.

ESTIMATION TECHNIQUE Of AIR CONTENT IN TUTOMATIC TRANSMISSION FLUID BY MEASURING EFFECTIVE BULK MODULUS

  • Cho, Baek-Hyun;Lee, Hyoun-Woo;Oh, Jong-Sun
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • It is well known that the entrained air in oil causes appreciable reduction in the stiffness of hydraulic systems. It makes the response delay of the systems and sometimes destroys the stability. Because the hydraulic systems of automatic transmissions are operated in relatively low pressure and high temperature, it is very important to analyze the effects of the air included in automatic transmission fluid. However, it is difficult to derive the generalized model to describe the effective bulk modulus theoretically or measure it in actual operating conditions of automatic transmissions. This paper reviews previous studies of the air effects in hydraulic systems and the measurement techniques of the effective bulk modulus in operating conditions. Based on this work, the theoretical model with moderate complexity and the measurement technique of the effective bulk modulus considering entrained air effect at real operating conditions are suggested. Our paper also shows that the quantity of the entrained air in the automatic transmission fluid can be estimated from the experimental results.

A computer program for the analysis of reinforced concrete frames with cracked beam elements

  • Tanrikulu, A. Kamil;Dundar, Cengiz;Cagatay, Ismail H.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.463-478
    • /
    • 2000
  • An iterative procedure for the analysis of reinforced concrete frames with beams in cracked state is presented. ACI and CEB model equations are used for the effective moment of inertia of the cracked members. In the analysis, shear deformations are taken into account and reduced shear stiffness is considered by using effective shear modulus models available in the literature. Based on the aforementioned procedure, a computer program has been developed. The results of the computer program have been compared with the experimental results available in the literature and found to be in good agreement. Finally, a parametric study is carried out on a two story reinforced concrete frame.

Effects of shear deformation on the effective length of tapered columns with I-section for steel portal frames

  • Li, Guo-Qiang;Li, Jin-Jun
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.479-489
    • /
    • 2000
  • Based on the stiffness equation of the tapered beam element involving the effects of axial force and shear deformation, numerical investigations are carried out on elastic instability for web-linearly tapered columns with I-section of steel portal frames. Effects of shear deformation on the effective length of the tapered columns with I-section are studied. An efficient approach for determining the effective length of the tapered portal frame columns considering effects of shear deformation is proposed.

Effective length factors for the framed columns with variable stiffness (골조구성 변단면 기둥의 유효길이 계수)

  • 이수곤;김순철;오금열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.175-182
    • /
    • 2001
  • Effective length factor approach for framed column design has long played an important design-aid role. This approach, however, is effective only when the columns are in the form of prismatic or uniform cross sections. Structural engineers who have to design or analyse framed columns with variable cross sections need some means to do their job. By using the finite element method, the stability analysis of the isolated compression members with variable cross sections and that of the framed columns are performed. The parameters considered in the stability analysis are taper and sectional property parameters of the columns, the second moment of inertia ratio of beam to column, and beam span to column height ratio. On the basis of the stability analysis results, effective length factor formulas for the columns with variable sections are derived.

  • PDF

Stiffness Characterization of Subgrade using Crosshole-Type Dynamic Cone Penetrometer (크로스홀 형태의 동적 콘 관입기를 이용한 노반의 강성특성 평가)

  • Hong, Won-Taek;Choi, Chan Yong;Lim, Yujin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • In order to support the load of the train with enough stiffness, a study on an effective method for the characterization of the stiffness of the compacted subgrade is required. In this study, the crosshole-type dynamic cone penetrometer (CDCP) is used for the stiffness characterization of the subgrade along the depth. For the application of the CDCP test, three points of compacted subgrades are selected as the study sites. For the study sites, CDCP test, in-situ density test, and light falling weight deflectometer (LFWD) test are conducted. As the results of CDCP tests, shear wave velocity profiles are obtained by using the travel times and the travel distances of the shear waves along the depth. In addition, maximum shear modulus ($G_{max}$) profiles are estimated by using the density of the subgrades and the shear wave velocity profiles. The averaged maximum shear moduli at each testing point are highly correlated with the dynamic deflection moduli ($E_{vd}$) determined by LFWD tests. Therefore, a reliable stiffness characterization of the subgrade can be conducted by using CDCP tests. In addition, because CDCP characterizes the stiffness of the subgrade along the depth rather than a representative value, CDCP test may be effectively used for the stiffness characterization of the subgrade.

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.