• Title/Summary/Keyword: effective factor of concrete compressive strength

Search Result 25, Processing Time 0.021 seconds

The Estimation on the Stirrup Effectiveness of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보에서 스터럽 유효성의 평가)

  • 김진근;박찬규;이영재;서원명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.267-272
    • /
    • 1995
  • The objective of this study is to investigate the effect of concrete strength on the stirrup effectiveness factor(K) of reinforced concrete beams with stirrup based on previous test results(a/d$\geq$2.5). In the procedure of the estimation of K, it was assumed that the ultimate shear strength for beams without stirrup is equal to the concrete contribution to shear strength for beam with stirrup. A model equation for calculation the stirrup of compressive strength of concrete. It was shown that the stirrup effective factor of compressive strength of concrete. It wah shown that the stirrup effective factor is greater than 1.0 up to compressive strength 85MPa. Therefore the current ACI Code equation for predicting the shear strength and the stirrup effectiveness factor of 1.0 is conservative for nomal and high stength concrete beams with stirrup.

  • PDF

The Evaluation of Structural Behavior of PSC I Type Girder Bridge through Material Nonlinear FEM Analysis (비선형 FEM 해석을 이용한 PSC I Typed 거더 교량의 구조거동 분석)

  • Sim Jongsung;Ju Minkwan;Kim Gyuseon;Moon Doyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.528-531
    • /
    • 2004
  • Nowadays, many of PSC bridges has constructed because high performance and long span bridge is required. Therefore, it is required that the evaluation of PSC bridges which retain various structure performance. In this study, nonlinear FEM analysis was performed with two parameter, concrete compressive strength and effective prestress force which is dominant factor for evaluating structural behavior of PSC bridge. Concrete compressive strength was adapted between 30Mpa and 100Mpa and effective prestress force was used the value which is considered effective rate for time-dependant effect. In the result of this study, it was showed that concrete compressive strength and effective prestress force is important factor for evaluating structural behavior of PSC bridge.

  • PDF

Effect of Effective Compressive Strength of Concrete Strut on Structural Concrete Design (콘크리트 스트럿의 유효강도가 콘크리트 부재의 설계에 미치는 영향)

  • 윤영묵;석철호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.241-246
    • /
    • 2000
  • In the strut-tie model design of structural concrete, the importance of the effective strength of concrete strut has been overlooked by many practitioners. The authors believe that the effective strength of concrete strut is an important factor not only in determining steel tie forces but also in verifying the nodal zone strength and geometric compatibility condition of a selected strut-tie model. This study evaluate the effect of the effective strength of concrete strut on structural concrete design by applying the different effective strut strengths to the strut-tie model design of a post-tensioned anchorage zone and a continuous concrete deep beam.

  • PDF

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures

  • Choi, Byong-Jeong;Kim, Won-Ki;Kim, Woo-Bum;Kang, Cheol-Kyu
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.473-491
    • /
    • 2013
  • The primary objectives of this paper are to describe the buckling patterns and to determine the squash load of steel plate-concrete (SC) walls. The major variables in this study were the width-thickness (B/t) ratio and yield strength of surface steel plates. Six SC walls were tested, and the results include the maximum strength, buckling pattern of steel plates, strength of headed studs, and behavior of headed studs. Based on the test results, the effects of the B/t ratio on the compressive strength are also discussed. The paper also presents recommended effective length coefficients and discusses the effects of varying the yield strength of the steel plate, and the effects of headed studs on the performance of SC structures based on the test results and analysis.

Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete (주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화)

  • Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.639-648
    • /
    • 2006
  • A shear experiment of one-way monotonic loading was carried out with the shear span ratio as the main experimental variable for reinforced concrete beam. Using the finite element analysis as the experimental analysis tool and the analysis method to compute the shear resistance of small shear span ratio, a new macro-model composed of crooked main strut and sub strut is proposed in consideration of the effect of bond action between re-bar and concrete based on the experimental result. The experimental finding affirmed the validity of the proposed macro-model when the shear span ratio was at or below 0.75 and confirmed that the experimental result was the most consistent with the computed analysis result when the effective factor of concrete compressive strength was set at 0.75.

Study on Precooling of Concrete Using Ice and Cooling Water (얼음과 냉각수를 이용한 콘크리트의 프리쿨링에 관한 연구)

  • 정철헌;박장호;이순환
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 2000
  • Crack control due to temperature is an important factor for the mass concrete structure. Pre-cooling is the effective system to reduce the highest temperature of mass concrete. In this study, for pre-cooling, cooling water, cooling water with ics flake are used. The results of a series of experimental studies indicate that the changes in properties of fresh concrete after cooling are of low degree, and compressive strength of concrete is changed very little by cooling. The adiabatic temperature rise is also measured with pre-cooling concrete specimens. It is shown that hydration heat characteristics of cement and concrete were largely affected by pre-cooling.

Load Transfer Characteristics of Post-Tensioning Anchorage (포스트텐션용 정착구의 하중전달 특성에 관한 연구)

  • 김민수;김진근;유영섭;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.657-662
    • /
    • 2000
  • This paper presents the results from experimental study that investigated to explore the load transfer characteristics of post-tensioning anchorage zones. The experimental program investigated the primary variables which affect the ultimate load, lateral strains and crack width: concrete compressive strength, details of reinforcement and shape of anchorage. Through this research, it was found that the governing factor of the ultimate load was not compressive cylinder strength but tensile splitting strength. Ultimate load was increased and lateral strain was decreased as the ratio of spiral increased because the lateral expansion of th concrete inside the spiral was restrained by the spiral. Furthermore, the shape of anchorage which can diminish the wedge effect of anchorage and disperse the anchorage force in various depths was more effective.

  • PDF

Predicting shear strength of SFRC slender beams without stirrups using an ANN model

  • Keskin, Riza S.O.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.605-615
    • /
    • 2017
  • Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.