• Title/Summary/Keyword: effective E-learning

Search Result 412, Processing Time 0.023 seconds

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Probability Map of Migratory Bird Habitat for Rational Management of Conservation Areas - Focusing on Busan Eco Delta City (EDC) - (보존지역의 합리적 관리를 위한 철새 서식 확률지도 구축 - 부산 Eco Delta City (EDC)를 중심으로 -)

  • Kim, Geun Han;Kong, Seok Jun;Kim, Hee Nyun;Koo, Kyung Ah
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.67-84
    • /
    • 2023
  • In some areas of the Republic of Korea, the designation and management of conservation areas do not adequately reflect regional characteristics and often impose behavioral regulations without considering the local context. One prominent example is the Busan EDC area. As a result, conflicts may arise, including large-scale civil complaints, regarding the conservation and utilization of these areas. Therefore, for the efficient designation and management of protected areas, it is necessary to consider various ecosystem factors, changes in land use, and regional characteristics. In this study, we specifically focused on the Busan EDC area and applied machine learning techniques to analyze the habitat of regional species. Additionally, we employed Explainable Artificial Intelligence techniques to interpret the results of our analysis. To analyze the regional characteristics of the waterfront area in the Busan EDC district and the habitat of migratory birds, we used bird observations as dependent variables, distinguishing between presence and absence. The independent variables were constructed using land cover, elevation, slope, bridges, and river depth data. We utilized the XGBoost (eXtreme Gradient Boosting) model, known for its excellent performance in various fields, to predict the habitat probabilities of 11 bird species. Furthermore, we employed the SHapley Additive exPlanations technique, one of the representative methodologies of XAI, to analyze the relative importance and impact of the variables used in the model. The analysis results showed that in the EDC business district, as one moves closer to the river from the waterfront, the likelihood of bird habitat increases based on the overlapping habitat probabilities of the analyzed bird species. By synthesizing the major variables influencing the habitat of each species, key variables such as rivers, rice fields, fields, pastures, inland wetlands, tidal flats, orchards, cultivated lands, cliffs & rocks, elevation, lakes, and deciduous forests were identified as areas that can serve as habitats, shelters, resting places, and feeding grounds for birds. On the other hand, artificial structures such as bridges, railways, and other public facilities were found to have a negative impact on bird habitat. The development of a management plan for conservation areas based on the objective analysis presented in this study is expected to be extensively utilized in the future. It will provide diverse evidential materials for establishing effective conservation area management strategies.

Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT (효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현)

  • TaeKyoung Roh;Sang-Hyun Ha;KiHwan Kim;Young-Jin Kang;Seok Chan Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.73-82
    • /
    • 2023
  • With 78% of current fisheries workers being elderly, there's a pressing need to address labor shortages. Consequently, active research on smart aquaculture technologies, centered on object detection and tracking algorithms, is underway. These technologies allow for fish size analysis and behavior pattern forecasting, facilitating the development of real-time monitoring and automated systems. Our study utilized video data from cameras outside aquaculture facilities and implemented fish detection and tracking algorithms. We aimed to tackle high maintenance costs due to underwater conditions and camera corrosion from ammonia and pH levels. We evaluated the performance of a real-time system using YOLOv7 for fish detection and the SORT algorithm for movement tracking. YOLOv7 results demonstrated a trade-off between Recall and Precision, minimizing false detections from lighting, water currents, and shadows. Effective tracking was ascertained through re-identification. This research holds promise for enhancing smart aquaculture's operational efficiency and improving fishery facility management.

A study on the application of M2PL-Q model for analyzing assessment data considering both content and cognitive domains: An analysis of TIMSS 2019 mathematics data (내용 및 인지 영역을 함께 고려한 평가 데이터 분석을 위한 Q행렬 기반 다차원 문항반응모형의 활용 방안 연구: TIMSS 2019 수학 평가 분석)

  • Kim, Rae Yeong;Hwang, Su Bhin;Lee, Seul Gi;Yoo, Yun Joo
    • Communications of Mathematical Education
    • /
    • v.38 no.3
    • /
    • pp.379-400
    • /
    • 2024
  • This study aims to propose a method for analyzing mathematics assessment data that integrates both content and cognitive domains, utilizing the multidimensional two-parameter logistic model with a Q-matrix (M2PL-Q; da Silva, 2019). The method was applied to the TIMSS 2019 8th-grade mathematics assessment data. The results demonstrate that the M2PL-Q model effectively estimates students' ability levels across both domains, highlighting the interrelationships between abilities in each domain. Additionally, the M2PL-Q model was found to be effective in estimating item characteristics by differentiating between content and cognitive domain, revealing that their influence on problem-solving can vary across items. This study is significant in that it offers a comprehensive analytical approach that incorporates both content and cognitive domains, which were traditionally analyzed separately. By using the estimated ability levels for individual student diagnostics, students' strengths and weaknesses in specific content and cognitive areas can be identified, supporting more targeted learning interventions. Furthermore, by considering the detailed characteristics of each assessment item and applying them appropriately based on the context and purpose of the assessment, the validity and efficiency of assessments can be enhanced, leading to more accurate diagnoses of students' ability levels.

A study on the introduction of definite integral by the fundamental theorem of calculus: Focus on the perception of math content experts and school field teachers (미적분학의 기본정리에 의한 정적분 도입에 대한 고찰: 내용전문가와 학교 현장 교사의 인식을 중심으로)

  • Heo, Wangyu
    • Communications of Mathematical Education
    • /
    • v.38 no.3
    • /
    • pp.443-458
    • /
    • 2024
  • This study analyzed the mathematical academic perspective and the actual status of the school field on the introduction of a definite integral as a 'Fundamental Theorem of Calculus' in the 2015 revised mathematics curriculum. Therefore, in order to investigate the mathematical academic perspective and the actual status of the school field, a study was conducted with 12 professors majoring in mathematical analysis and 36 teachers. From a mathematical academic point of view, professors majoring in mathematical analysis said that introducing a definite integral as a 'Fundamental Theorem of Calculus' in the 2015 revised mathematics curriculum was difficult to significantly represent the essence and meaning of the definite integral. In addition, in the actual status of the school field, teachers recognize the need for a relationship between a definite integral and the area of a figure, but when a definite integral is introduced as a 'Fundamental Theorem of Calculus', students find it difficult to recognize the relationship between the definite integral and the area of a figure. As the 2022 revised curriculum, which will be implemented later, introduces definite integrals as a 'Fundamental Theorem of Calculus' this study can consider implications for the introduction and guidance of static integrals. And, this study proposed a follow-up study on an effective teaching and learning method that can relate the definite integral to the area of the figure when introducing the definite integral as the 'Fundamental Theorem of Calculus' and on various visual tools and media.

Effects of the Deer Antler Extract on Scopolamine-induced Memory Impairment and Its Related Enzyme Activities (녹용 추출물이 치매 동물모델의 기억력 개선과 관련효소 활성에 미치는 효과)

  • Lee, Mi-Ra;Sun, Bai-Shen;Gu, Li-Juan;Wang, Chun-Yan;Fang, Zhe-Ming;Wang, Zhen;Mo, Eun-Kyoung;Ly, Sun-Young;Sung, Chang-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.409-414
    • /
    • 2009
  • The aim of this study was to investigate the ameliorating effects of deer antler extract on the learning and memory impairments induced by the administration of scopolamine (2 mg/kg, i.p.) in rats. Tacrine was used as a positive control agent for evaluating the cognition enhancing activity of deer antler extract in scopolamine-induced amnesia models. The results showed that the deer antler extract-treated group (200 mg/kg, p.o.) and the tacrine-treated group (10 mg/kg, p.o.) significantly ameliorated scopolamine-induced amnesia based on the Morris water maze test. Although there was no statistical significance of brain ACh contents among the experimental groups, the brain ACh contents of the deer antler extract-treated group was slightly higher than that of the scopolamine-treated group. The inhibitory effect of deer antler extract on the acetylcholinesterase activity in the brain was significantly lower than that of scopolamine-treated group. The tacrine- and the deer antler-treated groups reduced the MAO-B activity compared to the scopolamine-treated group, but not significantly. These results suggest that the deer antler extract could be an effective agent for the prevention of the cognitive impairment induced by cholinergic dysfunction.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

An Empirical Study on the Effect of CRM System on the Performance of Pharmaceutical Companies (고객관계관리 시스템의 수준이 BSC 관점에서의 기업성과에 미치는 영향 : 제약회사를 중심으로)

  • Kim, Hyun-Jung;Park, Jong-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.43-65
    • /
    • 2010
  • Facing a complex environment driven by a decade, many companies are adopting new strategic frameworks such as Customer Relationship Management system to achieve sustainable profitability as well as overcome serious competition for survival. In many business areas, CRM system advanced a great deal in a matter of continuous compensating the defect and overall integration. However, pharmaceutical companies in Korea were slow to accept them for usesince they still have a tendency of holding fast to traditional way of sales and marketing based on individual networks of sales representatives. In the circumstance, this article tried to empirically address current status of CRM system as well as the effects of the system on the performance of pharmaceutical companies by applying BSC method's four perspectives, from financial, customer, learning and growth and internal process. Survey by e-mail and post to employers and employees who were working in pharma firms were undergone for the purpose. Total 113 cases among collected 140 ones were used for the statistical analysis by SPSS ver. 15 package. Reliability, Factor analysis, regression were done. This study revealed that CRM system had a significant effect on improving financial and non-financial performance of pharmaceutical companies as expected. Proposed regression model fits well and among them, CRM marketing information system shed the light on substantial impact on companies' outcome given profitability, growth and investment. Useful analytical information by CRM marketing information system appears to enable pharmaceutical firms to set up effective marketing and sales strategies, these result in favorable financial performance by enhancing values for stakeholderseventually, not to mention short-term profit and/or mid-term potential to growth. CRM system depicted its influence on not only financial performance, but also non-financial fruit of pharmaceutical companies. Further analysis for each component showed that CRM marketing information system were able to demonstrate statistically significant effect on the performance like the result of financial outcome. CRM system is believed to provide the companies with efficient way of customers managing by valuable standardized business process prompt coping with specific customers' needs. It consequently induces customer satisfaction and retentionto improve performance for long period. That is, there is a virtuous circle for creating value as the cornerstone for sustainable growth. However, the research failed to put forward to evidence to support hypothesis regarding favorable influence of CRM sales representative's records assessment system and CRM customer analysis system on the management performance. The analysis is regarded to reflect the lack of understanding of sales people and respondents between actual work duties and far-sighted goal in strategic analysis framework. Ordinary salesmen seem to dedicate short-term goal for the purpose of meeting sales target, receiving incentive bonus in a manner-of-fact style, as such, they tend to avail themselves of personal network and sales and promotional expense rather than CRM system. The study finding proposed a link between CRM information system and performance. It empirically indicated that pharmaceutical companies had been implementing CRM system as an effective strategic business framework in order for more balanced achievements based on the grounded understanding of both CRM system and integrated performance. It suggests a positive impact of supportive CRM system on firm performance, especially for pharmaceutical industry through the initial empirical evidence. Also, it brings out unmet needs for more practical system design, improvement of employees' awareness, increase of system utilization in the field. On the basis of the insight from this exploratory study, confirmatory research by more appropriate measurement tool and increased sample size should be further examined.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

An Analysis of the Change of Secondary Earth Science Teachers' Knowledge about the East Sea's Currents through Drawing Schematic Current Maps (해류도 그리기를 통한 중등학교 지구과학 교사들의 동해 해류에 대한 지식의 변화 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Lee, Ki-Young;Choi, Byoung-Ju;Lee, Sang-Ho;Kim, Young-Taeg;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.258-279
    • /
    • 2015
  • The purpose of this study was to analyze the change of secondary earth science teachers' knowledge about the currents of the East Sea through drawing of a schematic map of oceanic currents. For this purpose, thirty two earth science teachers participated in the six-hour long training of learning and practice related to ocean current schematic map. The teacher participants performed drawing of the ocean current schematic map of the East Sea in three different phases, i.e.; pre-, post-, and delayed-post phase. In addition, all the maps conducted by participants were converted to digitalized image data. Detailed analysis were performed to investigate participating teachers' knowledge about the currents of the East Sea. Findings are as follows: First, the teacher participants have background knowledge about the ocean current map, but it reveals an incorrect knowledge about some concepts. Second, after teacher training, teachers' knowledge increased about the East Sea's currents, while a decrease was found in the differences between individual teachers' knowledge. This pattern was more evident in the delayed-post phase of drawing than in the post-phase occurred immediately after training. Third, the teacher participants were strongly aware of the need to improve the ocean current schematic map of the East Sea in science textbook in terms of scientific knowledge. In addition, they showed a high level of satisfaction about teacher training because they perceived that it was meaningful in various aspects; recognizing the importance of content knowledge and conjunction with instructional strategies, the needs of secondary science curriculum, and recognition of the nature of scientific knowledge. The results imply that teachers' subject matter knowledge plays a significant role to make science teaching effective.