• Title/Summary/Keyword: effect of pore structure

Search Result 343, Processing Time 0.03 seconds

Fracture behavior and pore structure of concrete with metakaolin

  • Akcay, Burcu;Sengul, Cengiz;Tasdemir, Mehmet ali
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.71-88
    • /
    • 2016
  • Metakaolin, a dehydroxylated product of the mineral kaolinite, is one of the most valuable admixtures for high-performance concrete applications, including constructing reinforced concrete bridges and impact- and fire-resistant structures. Concretes produced using metakaolin become more homogeneous and denser compared to normal-strength concrete. Yet, these changes cause a change of volume throughout hardening, and increase the brittleness of hardened concrete significantly. In order to examine how the use of metakaolin affects the fracture and mechanical behavior of high-performance concrete we produced concretes using a range of water to binder ratio (0.42, 0.35 and 0.28) at three different weight fractions of metakaolin replacement (8%, 16% and 24%). The results showed that the rigidity of concretes increased with using 8% and 16% metakaolin, while it decreased in all series with 24% of metakaolin replacement. Similar effect has also been observed for other mechanical properties. While the peak loads in load-displacement curves of concretes decreased significantly with increasing water to binder ratio, this effect have been found to be diminished by using metakaolin. Pore structure analysis through mercury intrusion porosimetry test showed that the addition of metakaolin decreased the critical pore size of paste phases of concrete, and increasing the amount of metakaolin reduced the total porosity for the specimens with low water to binder ratios in particular. To determine the optimal values of water to binder ratio and metakaolin content in producing high-strength and high-performance concrete we applied a multi-objective optimization, where several responses were simultaneously assessed to find the best solution for each parameter.

Effect of the changes in Micropore Structure on the Dyeability of BTCA Finished Cotton Fibers (BTCA로 방추가공된 면섬유의 기공구조 변화가 염색성에 미치는 영향)

  • 최연주;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.11
    • /
    • pp.1300-1306
    • /
    • 2003
  • Cotton fibers were treated, with 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) which is formaldehyde-free reagent to impart durable press performance. The dyeability, dyeing rate, and diffusion coefficient, of BTCA treated cottons were compared to prove the changes of pore size structure using direct dyes and disperse dyes. Diffusion coefficients of BTCA treated cotton fibers were determined at acidic conditions to figure out the effect of swelling. Since the dyeability of BTCA treated cotton fibers dyed with direct dyes were reduced, it is considered that the dyeability to direct dyes is related to the quantity of residual large pores. But, the dyeability to disperse dyes were increased due to the less reduction of small pore sizes and the increase of hydrophobicity in BTCA treated cotton cellulose. The dyeability to direct dye and disperse dye were decreased more at acidic conditions than at neutral conditions. It seemed that the swelling of pores in the fiber were inhibited.

Effect of Curing Condition in Early Age on Variation of Pore Structure and Carbonation of Fatigued Mortar (초기양생조건이 피로를 받은 모르터의 세공구조와 중성화의 변화에 미치는 영향)

  • ;Tanaka Kyoji
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.659-664
    • /
    • 2001
  • This paper was studied to effects of fatigue by low flexural load on micro structures and carbonation of mortar. Mortar specimens cured at various conditions were first subjected to bending repeated loads, and it was made clear that insufficient cure reduced fatigue resistance of them. Next, fatigue tests that the stress levels are lower than the ones of fatigue rupture were carried out, The effect of curing conditions in early age on carbonation was furthermore studied using the scale, and it was made clear that insufficient cure is also susceptible to carbonation of them. Finally, the reason for rapid carbonation of fatigued mortars insufficiently outed was discussed from the view point of changes in pore structure of them.

  • PDF

Effect of Steam Activation Parameters on Characteristics of Pine Based Activated Carbon

  • Manocha, S.M.;Patel, Hemang;Manocha, L.M.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • Activated carbons are well known as adsorbents for gases and vapors. Micro porous carbons are used for the sorption/separation of light gases, whereas, carbon with bigger pore size are applied for removal of large molecules. Therefore, the control of pore size of activated carbon plays a vital role for their use in specific applications. In the present work, steam activation parameters have been varied to control pore size of the resulting activated carbon. It was found that flow rate of steam has profound effect on both surface characteristic and surface morphology. The flow rate of steam was optimized to retain monolith structure as well as higher surface area.

Influence of Mg nanoparticles on Hydrogen Adsorption Behaviors of Multi-walled Carbon Nanotubes (다중벽 탄소나노튜브의 수소 흡착 거동에 대한 Mg 나노입자의 영향)

  • Yoo, Hye-Min;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.160-160
    • /
    • 2011
  • In this work, magnesium (Mg) nanoparticles were plated onto the surfaces of multi-walled carbon nanotubes (MWNTs) in order to investigate the effects of their presence on the high pressure hydrogen storage behaviors of the resultant Mg/MWNTs. The structure of Mg/MWNTs was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The pore structure and total pore volumes of Mg/MWNTs were analyzed by $N_2$/77 K adsorption isotherms. The hydrogen storage behaviors of the Mg/MWNTs were investigated by BEL-HP at 298K and 100 bar. From the results, it was found that Mg particles were homogeneously distributed on the MWNT surfaces. The hydrogen storage capacity increased in proportion to the Mg content. It can be concluded that Mg paricles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect.

  • PDF

Effect of Cholesterol on the Phase Change of Lipid Membranes by Antimicrobial Peptides

  • Choi, Hyungkeun;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1317-1322
    • /
    • 2014
  • Membrane disruption by an antimicrobial peptide (AMP) was investigated by measuring the $^2H$ solid-state nuclear magnetic resonance spectra of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) in mixtures of POPC_$d_{31}$/cholesterol and either magainin 2 or aurein 3.3 deposited on thin cover-glass plates. The line shapes of the experimental $^2H$ solid-state nuclear magnetic resonance (SSNMR) spectra were best simulated by assuming the coexistence of a mosaic spread of bilayers containing pore structures and a fasttumbling isotropic phase or a hexagonal phase. Within a few days of incubation in a hydration chamber, an isotropic phase and a pore structure were induced by magainin 2, while in case of aurein 3.3 only an isotopic phase was induced in the presence of a bilayer phase. After an incubation period of over 100 days, alignment of the bilayers increased and the amount of the pore structure decreased in case of magainin 2. In contrast with magainin 2, aurein 3.3 induced a hexagonal phase at the peptide-to-lipid ratio of 1/20 and, interestingly, cholesterol was not found in the hexagonal phase induced by aurein 3.3. The experimental results indicate that magainin 2 is more effective in disrupting lipid bilayers containing cholesterol than aurein 3.3.

A Study on Characterization of Surface and Pore for Ag-impregnated Activated Carbon (은이 침착된 활성탄의 표면과 세공특성에 관한 연구)

  • Kim, Jong-Gyu;Oh, Won-Chun;Kim, Myoung-Kun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.729-733
    • /
    • 1998
  • The surface structure and the pore size distribution of the activated carbon impregnated with silver have been investigated. It has been confirmed that the impregnants had an effect only on the external surface, not on the internal surface and that adsorption isotherms of both impregnated and non-impregnated activated carbons were classified as a typical BET type-I. As the amount of the impregnants increased, the amounts of adsorption, the specific surface area, and the micropore volume decreased and the window blocking was observed. The average pore diameter of the activated carbon impregnated with silver was observed to show the constant values regardless of the amount of the impregnants.

  • PDF

Improvement of Durability and Change of Pore Structure for Concrete Surface by the Penetrative Surface Protection Agent (함침계 표면보호제에 의한 콘크리트 표면의 세공구조 변화 및 내구성 향상)

  • Kang, Suk-Pyo;Kim, Jung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.125-132
    • /
    • 2006
  • Recently, surface finishing and protection materials were developed to restore performance of the deteriorated concrete and inhibiting corrosion of the reinforcing-bar. For this purpose, surface protection agent as well as coatings are used. Coatings have the advantage of low Permeability of $CO_2,\;SO_2$ and water. However, for coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, those have a problem with adhesion. On the other hand, surface protection agent penetrates into pore structure in concrete through capillary and cm make a dense micro structure in concrete as a result of filling effect. Furthermore, the chemical reaction between silicate from surface protection agent and cement hydrates can also make a additional hydration product which is ideally compatible with concrete body. The aim of this study is to examine the effect of penetrative surface protection agent(SPA) by evaluating several concrete durability characteristics. The results show that the concrete penetrated surface protection agent exhibited higher durability characteristics for instance, carbonation velocity coefficient, resistance to chemical attack and chloride ion penetration than the plain concrete. These results due to formation of a discontinuous macro-pore system which inhibits deterioration factors of concrete by changed the pore structure(porosity and pore size distributions) of the concrete penetrated surface protection agent.