• Title/Summary/Keyword: effect of pore structure

Search Result 343, Processing Time 0.024 seconds

Surface Milling for the Study of Pore Structure in Shale Reservoirs (셰일 저류층 내 공극 구조 연구를 위한 표면 밀링)

  • Park, Sun Young;Choi, Jiyoung;Lee, Hyun Suk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2020
  • Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.

Effect of Tert-Butyl Alcohol Template on the Pore Structure of Porous Tungsten in Freeze Drying Process (동결건조 공정에서 Tert-butyl alcohol 기공형성제가 텅스텐 다공체의 기공구조에 미치는 영향)

  • Lee, Eui Seon;Heo, Youn Ji;Ko, Yun Taek;Park, Jin Gyeong;Cho, Yong-Ho;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.216-220
    • /
    • 2021
  • The effect of tert-butyl alcohol (TBA) as a freezing solvent on the pore structure of a porous tungsten body prepared by freeze-drying is analyzed. TBA slurries with a WO3 content of 10 vol% are prepared by mixing with a small amount of dispersant and binder at 30℃. The slurries are frozen at -25℃, and pores are formed in the frozen specimens by the sublimation of TBA during drying in air. After hydrogen reduction at 800℃ and sintering at 1000℃, the green body of WO3 is completely converted to porous W with various pore structures. Directional pores from the center of the specimen to the outside are observed in the sintered bodies because of the columnar growth of TBA. A decrease in pore directionality and porosity is observed in the specimens prepared by long-duration drying and sintering. The change in pore structure is explained by the growth of the freezing solvent and densification.

Pore Size Distribution and Chloride Diffusivity of Concrete Containing Ground Granulated Blast Furnace Slag

  • Moon Han-Young;Kim Hong-Sam;Choi Doo-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.277-282
    • /
    • 2004
  • In a hardened concrete, diffusion of oxygen, carbon dioxide, aggressive ions, and moisture from the environment to the concrete takes place through the pore network. It is well known that making dense cement matrix enhances the durability of concrete as well as all the characteristics including strength of concrete. In this paper,9 mix concretes with water to cementitious material ratio (40,45, and $50\%$) and replacement ratio of GGBFS (40 and $60\%$ of cement by weight) were studied on the micro-pore structure by mercury intrusion porosimetry and the accelerated chloride diffusion test by potential difference. From the results the average pore diameter and accelerated chloride diffusivity of concrete were ordered NPC > G4C > G6C. It is concluded that there is a good correlation between the average pore diameter and the chloride diffusivity, and the mineral admixtures has a filling effect, which increases the tortuosity of pore and makes large pores finer, on the pore structure of cement matrix due to the latent hydraulic reaction with hydrates of cement.

Effects of Raw Materials for Papermaking and Physical Treatment on the Pore Structure and Paper Properties (제지 원료의 특성 및 물리적 처리가 종이의 기공 구조 및 물성에 미치는 영향)

  • Won, Jong-Myoung;Nam, Ki-Young;Chung, Soon-Ki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • Effects of pulp type, refining and filler type on the pore characteristics and physical properties of paper were investigated. HwBKP, SwBKP and BCTMP are used to study the effect of pulp type in this study. The effects of each filler (PCC, GCC and talc) and the combination of PCC/GCC were also studied. Highest bulk, pore volume and light scattering are obtained from BCTMP and PCC. It was found that the pore size and pore volume are important in light scattering in paper structure. It was found that PCC was the most effective filler for the improvement of the bulk and light scattering because of the increase in pore volume which can scatter light, but the increase of PCC content was not so effective in the improvement of bulk.

Effect of High-Molecular Weight Organic Compounds on Improvement of Pore Structure of Cement Materials

  • Lee, Woong-Geol;Jeon, Se-Hoon;Song, Myong-Shin;Kim, Jusung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.534-540
    • /
    • 2019
  • Carbon dioxide emissions involved in global warming are one of the most important issues in the world, and carbon dioxide emissions from the cement industry are about 7% of total carbon dioxide emissions. Thus, reduction in the amount of utilized cement can contribute to a reduction of carbon dioxide emissions. The average life of concrete is 20 ~ 30 years, and if concrete life can be improved by ten years, cement use will be much lower. In this study, we examined the use and effect of fructan from microbes as a method for the densification of the pore structure of cement. The effect of fructan on the hydration reaction and pore distribution, as well as the water absorption of hardened cement mortar were studied. Pores distribution increased in mesopore OPC, and absorption rate was found to decrease with the use of fructan, which has a glue-like and swelling character.

The Effect of Chemical Vapor Infiltrated SiC Whiskers on the Change in the Pore Structure of a Porous SiC Body

  • Joo, Byoung-In;Park, Won-Soon;Choi, Doo-Jin;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.199-202
    • /
    • 2006
  • In this study, SiC whiskers were grown on a porous SiC diesel particulate filter for nanoparticle filtering. To grow the whiskers at the inner pore without closing the pores, we used chemical vapor infiltration with a solution source and a dilute. As the deposition time increased, the whiskers grew and formed a network structure. After 180 min of deposition, the mean diameter of the whiskers was 174 nm and the compressive strength was 58.4 MPa. The pores shrank from $10{\mu}m\;to\;0.4{\mu}m$ and, because the whiskers filed the inner pores, the gradient of permeability decreased as the deposition time increased. However, by using the network structure of whiskers deposited for 120 min and 180 min, we obtained a diesel particulate filter with pores of $0.98{\mu}m\;and\;0.4{\mu}m$, respectively. Furthermore, the filter shows better permeability than a porous body with pores of $1{\mu}m$. In short, by filtering the nanoparticulate materials, the network structure of whiskers improves the strength, reduces the pore size and minimizes the permeability drop.

Preparation and Optical Characterization of Mesoporous Silica Films with Different Pore Sizes

  • Bae, Jae-Young;Choi, Suk-Ho;Bae, Byeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1562-1566
    • /
    • 2006
  • Mesoporous silica films with three different pore sizes were prepared by using cationic surfactant, non-ionic surfactant, or triblock copolymer as structure directing agents with tetramethylorthosilicate as silica source in order to control the pore size and wall thickness. They were synthesized by an evaporation-induced self-assembly process and spin-coated on Si wafer. Mesoporous silica films with three different pore sizes of 2.9, 4.6, and 6.6 nm and wall thickness ranging from $\sim$1 to $\sim$3 nm were prepared by using three different surfactants. These materials were optically transparent mesoporous silica films and crack free when thickness was less than 1 m m. The photoluminescence spectra found in the visible range were peaked at higher energy for smaller pore and thinner wall sized materials, consistent with the quantum confinement effect within the nano-sized walls of the silica pores.

Effect of Shell Structure of Artificial Lightweight Aggregates on the Emission Rate of Absorbed Water (인공경량골재의 표피층 구조가 흡수된 물의 방출속도에 미치는 영향)

  • Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.750-754
    • /
    • 2008
  • The artificial aggregates with dense surface layer (shell) was fabricated and the dependence of water emission rate upon the shell structures was studied. The EAF dust containing many flux components and waste white clay with ignition loss of above 48% were used as for liquid phase and gas forming agents during a sintering process respectively. In addition, the shell structure was modified with various processes and the modification effect on water emission rate was analyzed. The pores under $10{\mu}m$ were found in the sintered artificial light aggregates and disappeared by incorporating to a bigger pore during re-sintering. The water emission rate in an initial step depended on a void content of aggregates filled in a bottle rather than a shell structure. But, after 7 days where the water emission of the aggregate with a shell is above 40%, the shell of aggregates suppressed the water emission. The core of aggregates was exposed and most shell was lost when crushed to smaller size so, the ability for suppressing water emission of the crushed aggregates decreased. The activation energy for the water emission was $3.46{\pm}0.25{\times}10^{-1}$J/mol for the most specimens showing that the activation energy is irrelevant to the pore size distribution and shell structure.

An experimental study on the effect of deterioration of drainage system on tunnel structures (배수시스템 수리기능저하가 터널구조물에 미치는 영향에 대한 실험적 연구)

  • Kwon, Oh-Yeob;Shin, Jong-Ho;Yang, Yu-Hong;Joo, Eun-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.970-979
    • /
    • 2006
  • Construction of underground structure requires higher standard of planning and design specifications than in surface construction. However, high construction cost and difficult working environment limit design level and construction quality. One of the most sensitive factors to be considered are infiltration and external pore-water pressures. Development of pore-water pressure may accelerate leakage and cause deterioration of the lining. In this paper, the development of pore-water pressure and its potential effect on the linings are investigated using physical model tests. A simple physical equipment model with well-defined hydraulic boundary conditions was devised. The deterioration procedure was simulated by controlling both the permeability of filters and flowrate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanim of pore-water pressure development on the tunnel lining which is the effect of deterioration of drainage system. The laboratory tests were simulated using coupled numerical method, and shown that the deterioration mechanism can be reproduced using coupled numerical modelling method.

  • PDF

Waterproofing Mechanism of Hardened Cement Paste with Waterproofing Materials (구체방수제가 혼입된 시멘트 경화체의 방수 메카니즘)

  • Kang, Hyun Ju;Song, Myong Shin;Park, Jong Hun;Jeon, Se Hoon;Lee, Sung Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The pore volume of hardened cement with waterproofing materials is lower compared to that of hardened cement without waterproofing materials. Thus, fewer gaps will appear by means of chemical reactions between $Ca^{2+}$ ions in hardened cement and water, solutes, and other ions. Due to the selective permeability, the osmotic pressure of hardened cement can change due to physical effects such as the reduction of the pore volume and the reduction in the number of pores, as well as by the electrochemical reaction between water, solutes, other ions and $Ca^{2+}$ ions in hardened cement. Of course, these factors do not have independent effects but instead a combined complex effect. Accordingly, we studied changes in the osmotic pressure due to the difference in the pore structure of hardened cement. A pore size smaller than 1 nm in hardened cement had only a slight effect on the osmotic pressure, whereas a pore size larger than 1 nm had a direct effect on the osmotic pressure.