• Title/Summary/Keyword: effect of column length

Search Result 147, Processing Time 0.027 seconds

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.

Strength Prediction Model of Interior Flat-Plate Column Connections according to Design Parameters (설계변수에 따른 플랫플레이트-기둥 접합부의 강도산정모형)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.405-414
    • /
    • 2006
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of design parameters such as column section shape, gravity load and slab span on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases and gravity load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. And as the slab span loaded with relatively large gravity load increases, the negative moment around the connection increases and therefore the strength of connection against unbalanced moment decreases. By considering the effect of design parameters on the strength of the connections, the effective shear strength to calculate the torsional moment capacity of connection was proposed and the effectiveness of the proposed shear strength was verified.

Progressive Collapse Resisting Capacity of Building Structures with Infill Steel Panels (강판벽이 설치된 건물의 연쇄붕괴 저항성능)

  • Lee, Ha-Na;Kwon, Kwang-Ho;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • In this study the progressive collapse behavior of a moment frame with infill steel panels is evaluated using nonlinear static pushdown analysis. The analysis model is a two story two span structure designed only for gravity load, and the load-displacement relationship is obtained with the center column removed. To obtain local stress and strain as well as the global structural behavior, finite element analysis is conducted using ABACUS. Through the analysis the effect of the span length and the thickness of the steel plate on the progressive collapse behavior of the structure is investigated, and the effect of the dividing the infill panel using stud columns is also studied. According to the analysis results, the thickness of the panels required to prevent progressive collapse increases as the span length increases, and as the number of panel division increases the progressive collapse resisting capacity increases slightly but the effect is not significant. It is also observed that when the infill panel is installed in only a part of the span the progressive collapse resisting capacity is somewhat increased.

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

Effect of Injection Angle and Length to Diameter Ratios on Drop and Penetration Characteristics in Cross-flow (아름속 횡단 기체 유동장에서 노즐 형상 변화와 분사각 변화가 액적크기와 침투거리에 미치는 영향)

  • Lee, Bong-Soo;Ko, Jung-Bin;Cho, Woo-Jin;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.51-58
    • /
    • 2006
  • The spray characteristics of liquid jet injected into subsonic cross-flow were investigated experimentally. Spray trajectories were captured using CCD camera. Droplet sizes were measured using PDPA and Image Express. The nozzle diameter was 0.5 mm, and its length-to-diameter ratios (L/D) ran$4.11{\times}10^6$ged from 1.0 to 6.0. Experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration length is decreased by increasing Weber number. At low injection angle(${\theta}$ < $90^{\circ}$), Weber number is dominant parameter for trajectories, but at high injection angle(${\theta}$ > $90^{\circ}$), L/D is dominant parameter for trajectories rather than Weber number.

Prediction of Retention Behavior of Alkyl Benzenes by Hydrophobicity Parameters in Reversed-Phase Column (소수성 파라메터를 적용한 알킬벤젠류의 역상컬럼내의 용출거동 예측)

  • Lee, Chang-Young;Park, Myung-Yong;Lee, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.53 no.5
    • /
    • pp.281-285
    • /
    • 2009
  • The retention of solutes in reversed-phase high-performance liquid chromatography depends on their hydrophobicity. Although the retention behaviors of alkyl benzenes have been reported so far, quite a few authors have mentioned the retention behavior of alkyl benzenes with plural hydrophobicity parameters. In this sense, we were interested in the retention behaviors of alkyl benzenes having benzene moiety and increasing alkyl chain. In this study, we therefore investigated the retention behavior of alkyl benzenes in reversed-phase high-performance liquid chromatography in order to obtain information concerning the effects of the aromatic moiety and the carbon chain on the retention mechanism by comparing their capacity factor (k') in relation to the carbon chain length. The eluent acetonitrile ($CH_3CN$) showed high selectivity on alkyl benzenes, showing the high difference of capacity factor (${\Delta}log\;k'$) between toluene and octyl benzene. Indeed, the ${\Delta}log\;k'$ of 80% $CH_3CN$ represented 1.42- and 4.25-times longer than 90% MeOH and 60% THF, respectively. The hydrophobicity parameters, van der Waals volume, bond constant, partition constant, $\pi$-energy effect and enthalpy were evaluated with the capacity factor (k') of alkyl benzenes eluted on 80% CH3CN, 90% MeOH and 60% THF, respectively. The best eluent for predicting retention behavior of alkyl benzenes was 90% MeOH ($R^2$ 0.999). The three parameters, van der Waals volume, bond constant and partition constant were well coincident to log k' by increasing alkyl benzenes. However, $\pi$-energy effect and enthalpy were severely disagreeable. Taken together, van der Waals volume, bond constant and partition constant were a reliable parameters to predict the retention behaviors of alkyl benzenes on reversed-phase column.

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.

The beneficial effects of beam web opening in seismic behavior of steel moment frames

  • Erfani, Saeed;Naseri, Ata Babazadeh;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • Implementation of openings in beams web has been introduced as an innovative method for improving seismic performance of steel moment frames. In this paper, several steel moment frames have been studied in order to evaluate the effect of openings in beams web. The beam sections with web opening have been modeled as a simplified super-element to be used in designing frames and to determine opening configurations. Finite element models of designed frames were generated and nonlinear static pushover analysis was conducted. The efficient location for openings along the beam length was discovered and the effects of beams with web openings on local and global behavioral characteristics of frames were discussed. Base on the results, seismic performance of steel moment frames was improved by creating openings in beams web, in terms of reduction in stress level of frame sensitive areas such as beam to column connections and panel zones.

Improvement on the Free Spanning Analysis of Offshore Pipelines

  • Jung, Jong-Heon;Park, Han-Suk
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • Improvement was made on the free span analysis of the offshore pipelines. The effect of axial force (both tension and compressive force) can be explicitly applied to the current design code. The closed form solutions of beam-column equation were derived for the typical boundary conditions. The solutions can be used to find the natural frequencies of the span using the energy balance concept. The results can be applied to the current design code and will result more realistic calculation of free span lengths of offshore pipelines.

  • PDF

The Need for Research about Buckling Strength of Arch and Beam (보와 아치의 좌굴강도에 관한 연구의 필요성)

  • Lim, Nam-Hyoung;Lee, Chin-Ok;Ryu, Hyo-Jin;Lee, Woo-Chul;Koo, So-Yeun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.223-226
    • /
    • 2007
  • In current specification, modification factor(B) for web-tapered beam is used to account for the stress gradient and the restraining effect for adjacent spans. However, because these effects are considered together in modification factor, this paper revaluate the accuracy of the modification factor used in current specification. Also this paper investigate the flexural torsional buckling strength of laterally fixed thin-walled arch with doubly symmetric section using the analytical and numerical method. From this investigate the concept of effective length to consider the out-of-plane boundary condition for straight column or beam is not applicate for the flexural-torsional buckling of laterally fixed arches.

  • PDF