• Title/Summary/Keyword: effect assessment

Search Result 4,393, Processing Time 0.036 seconds

Health Risk Assessment for Residents after Exposure to Chemical Accidents: Formaldehyde (화학사고물질 노출에 따른 피해지역 주민 건강위해성평가: 폼알데하이드 사례를 중심으로)

  • Park, Sihyun;Cho, Yong-Sung;Lim, Huibeen;Park, Jihoon;Lee, Cheolmin;Hwang, Seung-Ryul;Lee, Chungsoo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.155-165
    • /
    • 2021
  • Objectives: Acute exposure to high concentrations of chemicals can occur when a chemical accident takes place. As such exposure can cause ongoing environmental pollution, such as in the soil and groundwater, there is a need for a tool that can assess health effects in the long term. The purpose of this study was assessing the health risks of residents living near a chemical accident site due to long-term exposure while considering the temporal concentration changes of the toxic chemicals leaked during the accident until their extinction in the environment using a multimedia environmental dynamics model. Methods: A health risk assessment was conducted on three cases of formaldehyde chemical accidents. In this study, health risk assessment was performed using a multimedia environmental dynamics model that considers the behavior of the atmosphere, soil, and water. In addition, the extinction period of formaldehyde in the environment was regarded as extinction in the environment when the concentration in the air and soil fell below the background concentration prior to the accident. The subjects of health risk assessment were classified into four groups according to age: 0-9 years old, 10-18 years old, 19-64 years old, and over 65 years old. Carcinogenic risk assessment by respiratory exposure and non-carcinogenic risk assessment by soil intake were conducted as well. Results: In the assessment of carcinogenic risk due to respiratory exposure, the excess carcinogenic risk did not exceed 1.0×10-6 in all three chemical accidents, so there was no health effect due to the formaldehyde chemical accident. As a result of the evaluation of non-carcinogenic risk due to soil intake, none of the three chemical accidents had a risk index of 1, so there was no health effect. For all three chemical accidents, the excess cancer risk and hazard index were the highest in the age group 0-9. Next, 10-18 years old, 65 years old or older, and 19-64 years old showed the highest risk. Conclusion: This study considers environmental changes after a chemical accident occurs and until the substance disappears from the environment. It also conducts a health risk assessment by reflecting the characteristics of the long-term persistence and concentration change over time. It is thought that it is of significance as a health risk assessment study reflecting the exposure characteristics of the accident substance for an actual chemical accident.

Ecological Risk Assessment of 4,4'-Methylenedianiline (4,4'-Methylenedianiline의 환경매체별 위해성평가)

  • Hyun Soo Kim;Daeyeop Lee;Kyung Sook Woo;Si-Eun Yoo;Inhye Lee;Kyunghee Ji;Jungkwan Seo;Hun-Je Jo
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.334-343
    • /
    • 2023
  • Background: South Korea's Act on Registration and Evaluation, etc. of Chemicals (known as K-REACH) was established to protect public health and the environment from hazardous chemicals. 4,4'-Methylenedianiline (MDA), which is used as a major intermediate in industrial polymer production and as a vulcanizing agent in South Korea, is classified as a toxic substance under the K-REACH act. Although MDA poses potential ecological risks due to industrial emissions and hazards to aquatic ecosystems, no ecological risk assessment has been conducted. Objectives: The aim of this study is to assess the ecological risk of MDA by identifying the actual exposure status based on the K-REACH act. Methods: Various toxicity data were collected to establish predicted no effect concentrations (PNECs) for water, sediment, and soil. Using the SimpleBox Korea v2.0 model with domestic release statistical data and EU emission factors, predicted environmental concentrations (PECs) were derived for ten sites, each referring to an MDA-using company. Hazard quotient (HQ) was calculated by ratio of the PECs and PNECs to characterize the ecological risk posed by MDA. To validate the results of modeling-based assessment, concentration of MDA was measured using in-site freshwater samples (two to three samples per site). Results: PNECs for water, sediment, and soil were 0.000525 mg/L, 4.36 mg/kg dw, and 0.1 mg/kg dw, respectively. HQ for surface water and sediment at several company sites exceeded 1 due to modeling data showing markedly high PEC in each environmental compartment. However, in the results of validation using in-site surface water samples, MDA was not detected. Conclusions: Through an ecological risk assessment conducted in accordance with the K-REACH act, the risk level of MDA emitted into the environmental compartments in South Korea was found to be low.

A Study on the Environmental Impact Assessment for Passive Apartment based on Life Cycle Assessment (LCA에 기초한 패시브 공동주택의 친환경성 평가에 관한 연구)

  • Gong, Yu-Ri;Tae, Sung-Ho;Song, Suwon;Roh, Seung-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.537-543
    • /
    • 2014
  • As environmental matters such as Green House Effect rise, many construction industries are putting an effort on minimizing environmental impact in terms of building life cycle throughout the world. However, in South Korea, evaluating the eco-friendly building based on life cycle assessment has been facing an academic ostracism while the most studies are focusing on assessing the 6 environmental impact assessments of passive apartment based on life cycle assessment. The theoretical consideration of the life cycle assessment and environmental impact category were performed and the direction of the study was set up. Also, existing apartment and passive apartment, which had same structure and same type were chosen and building materials per unit area were compared to find out the difference environmental impact for building life cycle. As a result, passive apartment was rated as low level among the 6 environmental impacts. Also, effect of building material on passive apartment was more important than its operational stage.

Improvement Plan of Ocean Physics Assessment Technique for Power Plant Thermal Effluent (발전소 온배수에 의한 해양물리학적 평가기법 개선방안 연구)

  • Kim, Myeong-Won;Jo, Gwang-Woo;Maeng, Jun-Ho;Kang, Tae-Soon;Kim, Jongkyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2014
  • This research analyzed the current situation and problems with an environmental impact assessment to provide a rational ocean physics assessment technique for power plant thermal effluent. This research also tried to create an improvement plan for heated effluent diffusion impact assessment by examining the reporting regulations for environmental impact assessment, national and international evaluation guidelines, etc. In the case of evaluating the oceanographic impact of heated effluent discharged from power plants, a pre-investigation is necessary before a full-scale presentence investigation, to accurately predict and minimize power plant construction effects on the surrounding environments. Before this presentence investigation, moreover, an integrated presentence plan, which agrees with the business plan, effect prediction, and post-investigation, needs to be established. A sufficient summit investigation must be made, which considers climate changes, and new and additional power plant construction. For accurate long-term oceanic environmental change prediction, the credibility of effect prediction must be elevated by presenting an evaluation method that is categorized by numerical organization models, verification methods, result presentation, and other things. Furthermore, unproductive conflicts between the people involved in heated effluent evaluation should be reduced by these improvement plans.

Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect (구속상태를 고려한 반타원 표면균열의 파손평가선도)

  • Seo, Heon;Han, Tae-Su;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

Fault Tree Analysis for Risk Assessment of CO2 Leakage from Geologic Storage (지중 저장 이산화탄소의 누출 위험도 평가를 위한 결함수 분석)

  • Lee, Sang Il;Lee, Sang Ki;Hwang, Jin Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.359-366
    • /
    • 2009
  • CCS (Carbon Capture and Storage) is considered as the most promising interim solution to deal with the greenhouse gas such as $CO_2$ responsible for global warming. Even though carefully chosen geologic formations are known to contain stored gas for a long time period, there are potential risks of leakage. Up to now, applicable risk assessment procedures for the leakage of $CO_2$ are not available. This study presents a basis for risk analysis applicable to a complex geologic storage system. It starts with the classification of potential leakage pathways. Receptors and the leakage effect on them are identified and quantified. Then, a fault tree is constructed, which yields the minimum cut set (i.e., the most vulnerable leakage pathway) and quantifies the probability of the leakage risk through the cut set. The methodology will provide a tool for risk assessment in a CCS project. The outcomes of the assessment will not only ensure the safety of the CCS system but also offer a reliable and efficient monitoring plan.

Comparative Study of Probabilistic Ecological Risk Assessment (PERA) used in Developed Countries and Proposed PERA approach for Korean Water Environment (확률생태위해성평가(PERA) 선진국 사례분석 및 국내수계에 적합한 PERA 기법 제안)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Woo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.494-501
    • /
    • 2009
  • Probabilistic Ecological risk assessment (PERA) is extensive approach to qualify and quantify risk on the multi species based on species sensitivity distribution (SSD). As a while, deterministic ecological risk assessment (DERA) considers the comparison of predicted no-effect concentration (PNEC) and predicted exposure concentration (PEC). DERA is used to determine if there is potential risk or no risk, and it doesn't consider the nature variability and the species sensitivity. But PERA can be more realistic and reasonable approach to estimate likelihood or risk. In this study, we compared PERA used in developed countries, and proposed PERA applicable for the Korean water environment. Taxonomic groups were classified as "class" level including Actinopterygill, Branchiopoda, Chlorophyceae, Maxillapoda, Insects, Bivalvia, Gastropoda, Secernentea, Polychaeta, Monocotyldoneae, and Chanophyceae in this study. Statistical extrapolation method (SEM), statistical extrapolation method $_{acutechronicratio}$ ($SEM_{ACR}$) and assessment factor method (AFM) were used to calculate the ecological protective concentration based on qualitative and quantitative levels of taxonomic toxicity data. This study would be useful to establish the PERA for the protection of aquatic ecosystem in Korea.

A Study on Assessment Items Analysis for Eco-corridors' Area - Using the Analytic Hierarchy Process - (생태통로 우선 설치지역의 평가항목 중요도 분석 - AHP 기법을 적용하여 -)

  • Park, Jihee;Yoo, Heonseok;Park, Miyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.301-312
    • /
    • 2009
  • Recently, habitat fragmentation and shrinkage has occurred because of increased road construction. As a measures mitigating the adverse effect such as eco-island by road construction, Korea has been installed eco-corridors since 1995. Using the Analytic Hierarchy Process (AHP), this study analyzed the importance of assessment items and the criteria to determine which areas require eco-corridors the most. First, related literature reviews, preliminary surveys, and expert interviews were carried out to develop assessment items and criteria for constructing the hierarchy. Second, experts were surveyed in order to determine the relative importance of the assessment items by applying the AHP. As a result, it found that the restoration of the ecological network was the most important assessment item, followed by wild animal resources in the Level 3. In the Level 4, the eighteen items were ranked in the order of their relative weight and it was found that the 'Baekdudaegan Mountain Range (0.189)' was the highest ranked item. Therefore, this approach can be applied to effective selection of the priority areas in planning eco-corridors in the national scale.

DETERMINISTIC EVALUATION OF DELAYED HYDRIDE CRACKING BEHAVIORS IN PHWR PRESSURE TUBES

  • Oh, Young-Jin;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.265-276
    • /
    • 2013
  • Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC). The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.