• Title/Summary/Keyword: edge stress

Search Result 640, Processing Time 0.023 seconds

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.

Order of Stress Singularities at Bonded Edge Corners with Two or Three Dissimilar Materials in the Eletronic Package (전자부품 패키지에 내재된 두재료 혹은 세재료 접합점에 대한 응력특이차수)

  • Choe, Seong-Ryeol;Gwon, Yong-Su;Park, Sang-Seon;Park, Jae-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 1996
  • Order of stress singularities at bonded Edge Corners with two or three dissimilar isotropic Materials is analyzed. The problem is formulated by Mellin transform and characteristic equation is obtained as a determinant of matrix considering boundary conditions. Roots of characterictic equation are determinde by numerical calculations with ward method, from which the order of stress sigularities is obtained. Applying the results to the electronic packaging, the order of stress singularities is obtained. Applying the results to the electronic packaging, the order of stress singularities at bounded edge corners is calculated as a various bouned edge angle with given material combinations. Comparing the results, the optimal material combinaitons of bounded edge corners and bouned edge angle to reduce stress singularity could be determined. It suggests that the results are used to the basic design of electronic packaging reducing the stress singularity.

Analysis on contact stress concentration at the end of strip mill rolls (압연기용 Roll의 동견부(Chamfer=Barrel Edge)에서의 음력집중의 완화 대책)

  • Ono, Shinichi
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.13-16
    • /
    • 2009
  • In order to investigate the effects of geometry factors such as a roil diameter ratio and backup roll crown of the stress concentration factor on the edge of backup roil end, 3-dimensional FEM analyses of stress at the contact of backup roll and work roll assembled in a 4-high strip mill were carried out, It was made clear that the peak stress at the edge is about 2 to 3 times of that at the longitudinal center of the roll barrel and the peak stress proportionally increase with decreasing the ratio of backup roll diameter to work roll diameter Furthermore a crowning on the backup roll is effective to decrease the maximum edge stress.

  • PDF

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1201-1214
    • /
    • 2015
  • This paper introduces the combined effect of electric field, magnetic field and thermal field on edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. The dispersion relation of edge wave has been obtained by using classical dynamical theory of thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter.

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint considered Residual Stress (잔류응력을 고려한 IB형 spot 용접이음재의 피로강도 평가)

  • 손일선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.127-131
    • /
    • 1997
  • In systematic and orderly estimation of fatigue strength of the spot welded lap joints, because the influence of residual stress of fatigue crach initiation and growth is not negligible, there need to estimate fatigue strength considered residual stress at near spot weld part of the lap joints. Therefore, in this thesis, peformed stress distribution and residual stress analysis at near the spot weld part by F.E.M and X-ray diffraction method, and obtained the maximum principal stress considered residual stress at nugget edge by superposing residual stress at nugget edge by superposing their results. From the results obtained above, we could find that fatigue strength of the IB-type spot welded lap joints was rearranged by the maximum principal stress considered residual stress at nugget edge and was entirely low about 13 percents compare with that neglected residual stress.

  • PDF

Stress Behavior of Substrate by Thin Film Pattern (박막 패턴에 의한 기판의 응력 거동)

  • Nam, Myung Woo;Hong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • Stress is the main cause of warpage failure of very thin substrates with thickness of several hundred ㎛, such as IC packages. Stress usually results from differences in crystal structures and corresponding thermal expansion coefficients when depositing different substances on a substrate. In this study, the behaviors of stress occurring in substrates were numerically analyzed by the thin-film pattern of the rectangles stacked on the substrates. First, the substrate displacement was obtained and the substrate strain and stress were obtained using it. When the tensile force is concentrated at the edge of the thin film pattern, normal and shear stresses are generated around the edge of the thin film pattern. Normal stress occurs near the edges of the thin film pattern and the vertexes. Shear stress also occurs around the edge of the thin film pattern, but unlike normal stress, it does not appear near the vertexes. It was also confirmed that the magnitude and direction of shear stress are changed around the edge. When edge forces of thin-film pattern are equal, the normal stress was about 10 times larger than the shear stress. This indicates that normal stress is the biggest cause of warpage failure.

Behavior and Improvement of Construction Crack occurred on Anchorage of PSC-edge Girder Rahmen Bridge (PSC-Edge 거더 라멘교의 정착부에 발생한 시공 균열 거동과 개선)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.569-576
    • /
    • 2019
  • PSC-Edge Rahmen Bridge makes low thickness and long span by introducing prestressed force to the edge girder and reducing positive moment. In the bridge, diagonal tension cracks occurred in the direction of $45^{\circ}$ to outer side of the girder after the temporary bent supported on the lower part of the upper slab and the secondary strand is tensioned on the girder. Researches on stress distribution and burst crack behavior of pre-stress anchorage has been conducted, it is difficult to analyze an obvious cause due to difference between actual shape and boundary condition. This study performed 3D frame analysis with additional boundary condition of temporary bent, the maximum compression stress occurred in the girder and there was a limit to identify the cause. It performed 3D Solid analysis with LUSAS 16.1 and the maximum principal tensile stress occurred at the boundary between the girder and the slab. As analyzing required reinforcement quantity at obtuse angle of the girder with the maximum principal tensile stress and directional cosine, reinforcement quantity was insufficient. Additional bridges have increased reinforcement quantity and extended area and crack was not occurred. It is expected that cracks on the girder during construction could be controlled by applying the proposed method to PSC-Edge Rahmen Bridge.

Effect of Blade Leading Edge Sweep on the Performance of a High Pressure Centrifugal Compressor Impeller

  • Wang, Hongliang;Xi, Guang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.823-827
    • /
    • 2008
  • The effects of blade leading edge sweep on both the aerodynamic performance and the structure stress of a high pressure centrifugal compressor impeller are numerically investigated. Changes in the flow structure occur as a result of the effect of leading edge sweep on the loading distribution in the tip region. The flow separation is avoided by introducing a sweep of the main blade leading edge and the strength of shock is reduced at the same time. Backswept of the leading edge is found to be beneficial to the impeller performance improving. On the other hand, the structural analysis indicated that high rotating speed of the impeller will cause substantial high bending stresses and radial deflections of the blade. Studies have shown that it is possible to control the stress distribution along the tip and root of the blade by slight adjustments to the sweep angle of the leading edge. These adjustments may be used to design the impeller with lower blade root stress distribution without aerodynamics performance penalty.

  • PDF

Viscoelastic Analysis of Stress Intensity Factor for Interface Edge Crack in a Unidirectional Liminate (단일방향 복합재료의 공유면에 존재하는 계면 모서리균열의 점탄성 해석)

  • 이상순;김범식
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.129-134
    • /
    • 1997
  • Interfacial stress singularity in a unidirectional two-dimensional laminate model consisting of an elastic fiber and a viscoelastic matrix has been investigated using the time-domain boundary element method. First, the interfacial singular stresses between the fiber and the matrix of a unidirectional laminate subjected to a uniform transverse tensile strain have been investigated near the free surface, but without any defect or any edge crack. Such a stress singularity might lead to fiber-matrix debonding or interfacial edge cracks. Then, the overall stress intensity factor for the case of a small interfacial edge crack of length a has been computed.

  • PDF