• Title/Summary/Keyword: edge normalization

Search Result 23, Processing Time 0.02 seconds

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

Soil-Water Partition Coefficients for Cadmium in Some Korean Soils (우리나라 일부 토양에 대한 카드뮴의 토양-물 분배계수)

  • Ok, Yong-Sik;Lee, Ok-Min;Jung, Jin-ho;Lim, Soo-kil;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.200-209
    • /
    • 2003
  • Distribution coefficient ($K_d$) is an universal parameter estimating cadmium partition for a soil-water-crop system in agricultural lands. This study was performed to find some factors affecting soil-water partition coefficients for cadmium in some Korean soils. The distribution coefficients ($K_d$) of cadmium for the 15 series of agricultural soils were measured at quasi-steady state in the pH ranges from 2 to 11. The adsorption data of the selected soils showed a linear relationship between log $K_d$ and pH, which was well agreed with theoretically expected results ; $log\;K_d=0.6339pH+0.5532(r^2=0.70^{**})$. Normalization of the partition coefficients were performed in a range of pH 3.5 ~ 8.5 to minimize adverse effects of Al dissolution, cationic competition, and organic matter dissolution. The $K_d$-om, partition coefficients normalized for organic matter, improved this linearity to the pH of soils. The values of $K_d$-om measured from the field samples were significantly correlated with those of $K_d$ predicted from the sorption-edge experimental data ($r^2=0.68^{**}$).

MCBP Neural Netwoek for Effcient Recognition of Tire Claddification Code (타이어 분류 코드의 효율적 인식을 위한 MCBP망)

  • Koo, Gun-Seo;O, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.465-482
    • /
    • 1997
  • In this paper, we have studied on cinstructing code-recognition shstem by neural network according to a image process taking the DOT classification code stamped on tire surface.It happened to a few problems that characters distorted in edge by diffused reflection and two adjacent characters take the same label,even very sen- sitive to illumination ofr recognition the stamped them on tire.Thus,this paper would propose the algorithm for tire code under being cinscious of these properties and prove the algorithm drrciency with a simulation.Also,we have suggerted the MCBP network composing of multi-linked recognizers of dffcient identify the DOT code being tire classification code.The MCBP network extracts the projection balue for classifying each character's rdgion after taking out the prjection of each chracter's region on X,Y axis,processes each chracters by taking 7$\times$8 normalization.We have improved error rate 3% through the MCBP network and post-process comparing the DOT code Database. This approach has a accomplished that learming time get's improvenent at 60% and recognition rate has become to 95% from 90% than BckPropagation with including post- processing it has attained greate rates of entire of tire recoggnition at 98%.

  • PDF