• Title/Summary/Keyword: edge loss

Search Result 369, Processing Time 0.023 seconds

Numerical Evaluation of Flow and Performance of Turbo Pump Inducers

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.481-490
    • /
    • 2004
  • Steady state flow calculations are executed for turbo-pump inducers of modern design to validate the performance of Tascflow code. Hydrodynamic performance of inducers is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of whole pressure loss through the blade passage. The viscous loss is considerably large due to the strong secondary flow. There appears more stronger leading edge recirculation for the backswept inducer, and this increases the pressure loss. However, blade loading near the leading edge is considerably reduced and cavitation inception delayed.

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Lee, Kee-Man;Kim, Jeong-Soo;Kim, Sung-Cho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.145-152
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The dramatic change of burner diameters in which flame length is an indicator of lateral conduction heat loss was applied to examine the onset condition of edge flame oscillation and flame oscillation modes. Especially, extinction behaviors quite different from the previous study were observed.

  • PDF

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.34-41
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses and Lewis number on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The excessive heat loss caused by the smaller burner diameter in which the flame length is an indicator of lateral conduction heat loss extends the region of flame oscillation and accelerates oscillatory instability in comparison to the previous study with the burner diameter of 26mm. Extinction behaviors quite different from the previous study are also addressed.

  • PDF

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2 (이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성)

  • Hwang, Dong-Jin;Kim, Jeong-Soo;Keel, Sang-In;Kim, Tae-Kwon;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

Performance Analysis of an Axial Flow Turbine Stage with Coolant Ejection from Stator Trailing Edge (정익 후연의 냉각유체분사를 포함한 축류터빈단의 성능해석)

  • Kim, Tong Seop;Kim, Jae Hwan;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.831-840
    • /
    • 1999
  • In this work, an aerothermodynamic calculation model for cooled axial flow turbine blades with trailing edge ejection is suggested and a mean line performance analysis of a turbine stage with nozzle cooling is carried out. A unique model regarding the interaction between coolant and main gas is proposed, while existing correlations are adopted to predict viscous loss and blade outflow angle. The interactions considered are the heat transfer from main gas to coolant and the temperature and pressure losses by the mixing of two streams due to the trailing edge coolant ejection. For a stator blade without ejection, trailing edge loss calculated by the trailing edge analysis is compared with that calculated by loss correlation. The effect of heat transfer effectiveness of coolant passage on the mixing loss is analyzed. For a model turbine stage with nozzle cooling, parametric analyses are carried out to investigate the effect of main design variables(coolant mass flow ratio, temperature and ejection area) on the stage performance.

An Edge Detection Technique for Performance Improvement of eGAN (eGAN 모델의 성능개선을 위한 에지 검출 기법)

  • Lee, Cho Youn;Park, Ji Su;Shon, Jin Gon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.109-114
    • /
    • 2021
  • GAN(Generative Adversarial Network) is an image generation model, which is composed of a generator network and a discriminator network, and generates an image similar to a real image. Since the image generated by the GAN should be similar to the actual image, a loss function is used to minimize the loss error of the generated image. However, there is a problem that the loss function of GAN degrades the quality of the image by making the learning to generate the image unstable. To solve this problem, this paper analyzes GAN-related studies and proposes an edge GAN(eGAN) using edge detection. As a result of the experiment, the eGAN model has improved performance over the existing GAN model.

Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers (터보펌프 인듀서의 유동 및 성능의 수치적 평가)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.243-249
    • /
    • 2001
  • Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.

  • PDF

Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors (초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

Jamming Effects of GPS L1 C/A Signal by Knife-Edge Diffraction Loss at Seoul Metropolitan Northwestern Region (회절을 고려한 수도권 서북부 지역에서 GPS L1 C/A 신호의 재밍영향분석)

  • Yoo, Seungsoo;Kim, Sun Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.757-763
    • /
    • 2013
  • This study discusses the multiple knife-edge diffraction loss with the receiver and jammer located in the Seoul metropolitan northwestern region. The considered positioning and jamming signals are the GPS L1 C/A signal and several jamming signals such as the wideband Gaussian noise, matched spectrum, and continuous wave signals. To calculate the accurate diffraction effects, the 3-dimensional topography data at the Seoul metropolitan northwestern region was used.