• Title/Summary/Keyword: edge load

Search Result 524, Processing Time 0.032 seconds

Effect of Car-Crash at Edge Beam of U-Channel Bridge based on Korean Highway Bridge Specifications and AASHTO LRFD Bridge Design Specifications (도로교 설계기준 및 AASHTO LRFD 설계기준에 근거한 U-채널 교량측보의 차량충돌의 영향)

  • Choi, Dong-Ho;Na, Ho-Sung;Lee, Kwang-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.490-494
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Although it is effective to reduce additional dead loads, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, it requires behavior analysis and property investigation through the vehicle impact crashing edge beam. This study presents method of structural analysis of U-channel bridge and investigates design specifications for the effect of the edge beam under the vehicle impact. Also, it carries out stability investigation of behavior of edge beam and slab, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification.

  • PDF

A Novel Auxiliary Edge-Resonant Snubber-Assisted Soft Switching PWM High Frequency Inverter with Series Capacitor Compensated Resonant Load for Consumer Induction Heating

  • Ahmed Nabil A.;Iwai Toshiaki;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, a novel prototype of auxiliary switched capacitor assisted voltage source soft switching PWM Single-Ended Push Pull (SEPP) series capacitor compensated load resonant inverter with two auxiliary edge resonant lossless inductor snubbers is proposed and discussed for small scale consumer high-frequency induction heating (IH) appliances. The operation principle of this inverter is described by using switching mode equivalent circuits. The newly developed multi resonant high-frequency inverter using trench gate IGBTs can regulate its output AC power via constant frequency edge-resonant associated soft switching commutation by using an asymmetrical PWM control or duty cycle control scheme. The brand-new consumer IH products which use the newly proposed edge-resonant soft switching PWM-SEPP type series load resonant high-frequency inverters are evaluated using power regulation characteristics, actual efficiency vs. duty cycle and input power vs. actual efficiency characteristics. Their operating performance compared with some conventional soft switching high-frequency inverters for IH appliances is discussed on the basis of simulation and experimental results. The practical effectiveness of the newly proposed soft switching PWM SEPP series load resonant inverter is verified from an application point of view as being suitable for consumer high-frequency IH appliances.

A Study on the Structural Stability of Edge Beam of U-Channel Bridge Under Impact Loads (충돌하중을 받는 U-채널 교량 측보의 구조적 안정성에 관한 연구)

  • Choi, Dong-Ho;Na, Ho-Sung;Lee, Kwang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.333-336
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Nevertheless, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, this study carries out analysis of behavior of edge beam and slab and evaluation of structural stability under impact loads, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification. According to analysis result, the maximum stress of edge beam and slab satisfies specification of allowable stress.

  • PDF

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Analysis of partial offloading effects according to network load (네트워크 부하에 따른 부분 오프로딩 효과 분석)

  • Baik, Jae-Seok;Nam, Kwang-Woo;Jang, Min-Seok;Lee, Yon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.591-593
    • /
    • 2022
  • This paper proposes a partial offloading system for minimizing application service processing latency in an FEC (Fog/Edge Computing) environment, and it analyzes the offloading effect of the proposed system against local-only and edge-server-only processing based on network load. A partial offloading algorithm based on reconstruction linearization of multi-branch structures is included in the proposed system, as is an optimal collaboration algorithm between mobile devices and edge servers [1,2]. The experiment was conducted by applying layer scheduling to a logical CNN model with a DAG topology. When compared to local or edge-only executions, experimental results show that the proposed system always provides efficient task processing strategies and processing latency.

  • PDF

Effect of lateral restraint on the buckling behaviour of plates under non-uniform edge compression

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.85-104
    • /
    • 1997
  • The paper investigates the influence of lateral restraint on the buckling behaviour of plate under non-uniform compression. The unloaded edges are assumed to be partially restrained against translation in the plane of the plate and the distributions of the resulting forces acting on the plate are shown. The stability analysis is done numerically using the Galerkin method and various strategies the economize the numerical implementation are presented. Results are obtained showing the variation of the buckling load, from free edge translation to fully restrained, with unloaded edges simply supported, clamped and partially restrained against rotation for various plate aspect ratios and stress gradient coefficients. An apparent decrease in the buckling load is observed due to these destabilizing forces acting in the plate and changes in the buckling modes are observed by increasing the intensity of the lateral restraint. A comparison is made between the budding loads predicted from various formulas in stability standards based on free edge translation and the values derived from the present investigation. A difference of about 34% in the predicted buckling load and different buckling mode were found.

Task Scheduling on Cloudlet in Mobile Cloud Computing with Load Balancing

  • Poonam;Suman Sangwan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.73-80
    • /
    • 2023
  • The recent growth in the use of mobile devices has contributed to increased computing and storage requirements. Cloud computing has been used over the past decade to cater to computational and storage needs over the internet. However, the use of various mobile applications like Augmented Reality (AR), M2M Communications, V2X Communications, and the Internet of Things (IoT) led to the emergence of mobile cloud computing (MCC). All data from mobile devices is offloaded and computed on the cloud, removing all limitations incorporated with mobile devices. However, delays induced by the location of data centers led to the birth of edge computing technologies. In this paper, we discuss one of the edge computing technologies, i.e., cloudlet. Cloudlet brings the cloud close to the end-user leading to reduced delay and response time. An algorithm is proposed for scheduling tasks on cloudlet by considering VM's load. Simulation results indicate that the proposed algorithm provides 12% and 29% improvement over EMACS and QRR while balancing the load.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Analysis of the effect of punch wear on shear surfaces in the piercing process (피어싱 공정에서의 펀치 마모가 전단면에 미치는 영향 분석)

  • Jeon, Yong-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.28-33
    • /
    • 2022
  • The recent increasing application rate of advanced high-strength steel(AHSS) for automotive parts makes it difficult to ensure the durability of forming tools. Significant load and friction generated during the piercing process of AHSS increase the wear rate and the damage degree to dies. These harsh process conditions also yield product failures, such as dimensional inconsistency of pierced holes and insufficient quality of hole's sheared edge. This study analyzed the effect of punch wear on the sheared surface of pierced parts and the forming load during the piercing process. Wear-shaped punches showed approximately 20% higher piercing load than normal-shaped punches, and the rollover ratio of the sheared surface also increased. It is considered that the dull edge of wear-shaped punches does not penetrate directly into the material but shears after tensioning it in a piercing direction. In addition, wear-shaped punches experienced compressive load even after completing the piercing process during the down-stroke and tensile load during the up-stroke. This load variation is related to the smaller diameter piercing holes produced by wear-shaped punches compared to normal-shaped punches. Thus, we demonstrated the predictability of the wear level of dies through a comparative analysis of the piercing load pattern.

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.