• 제목/요약/키워드: edge flipping algorithm

검색결과 4건 처리시간 0.016초

점 집합의 보로노이 다이어그램을 이용한 원 집합의 보로노이 다이어그램의 계산: I. 위상학적 측면 (The Computation of the Voronoi Diagram of a Circle Set Using the Voronoi Diagram of a Point Set: I. Topology)

  • 김동욱;김덕수;조동수
    • 한국CDE학회논문집
    • /
    • 제6권1호
    • /
    • pp.24-30
    • /
    • 2001
  • An efficient and robust algorithm to compute the exact Voronoi diagram of a circle set is presented. The circles are located in a two dimensional Euclidean space, the radii of the circles are non-negative and not necessarily equal, and the circles are allowed to intersect each other. The idea of the algorithm is to use the topology of the point set Voronoi diagram as a seed so that the correct topology of the circle set Voronoi diagram can be obtained through a number of edge flipping operations. Then, the geometries of the Voronoi edges of the circle set Voronoi diagram are computed. In particular, this paper discusses the topological aspect of the algorithm, and the following paper discusses the geometrical aspect. The main advantages of the proposed algorithm are in its robustness, speed, and the simplicity in its concept as well as implementation. Since the algorithm is based on the result of the point set Voronoi diagram and the flipping operation is the only topological operation, the algorithm is always as stable as the Voronoi diagram construction algorithm of a point set.

  • PDF

원 집합의 보로노이 다이어그램을 구하는 모서리 플립 알고리듬 (Edge-flipping algorithm for computing the circle set Voronoi diagram)

  • 김동욱;김덕수
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.467-472
    • /
    • 2002
  • Presented in this paper is an algorithm to compute the Voronoi diagram of a circle set from the Voronoi diagram of a point set. The circles are located in Euclidean plane, the radii of the circles are non-negative and not necessarily equal, and the circles are allowed to intersect each other. The idea of the algorithm is to use the topology of the point set Voronoi diagram as a seed so that the correct topology of the circle set Voronoi diagram can be obtained through a number of edge flipping operations. Then, the geometries of the Voronoi edges of the circle set Voronoi diagram are computed. The main advantages of the proposed algorithm are in its robustness, speed, and the simplicity in its concept as well as implementation.

  • PDF

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

페트로프-갤러킨 자연요소법 : III. 기하학적 비선형 해석 (The Petrov-Galerkin Natural Element Method : III. Geometrically Nonlinear Analysis)

  • 조진래;이홍우
    • 한국전산구조공학회논문집
    • /
    • 제18권2호
    • /
    • pp.123-131
    • /
    • 2005
  • 기존의 부브노프-갤러킨 자연요소법(BG-NEM)에서 발생하는 수치적분의 부정확성을 페트로프-갤러킨 자연요소법(PG-NEM)에서 완벽히 해결할 수 있음을 저자들의 이전 논문에서 확인하였다. 본 논문에서는 PG-NEM을 확장하여 2차원 기하학적 비선형 문제를 다룬다. 해석을 위해 선형화된 토탈 라그랑지 정식화를 도입하고 PG-NEM을 적용하여 근사화한다. 각 하중 단계마다 절점은 새로운 위치로 갱신되며, 재분포된 절점을 바탕으로 형상함수를 새롭게 구성한다. 이러한 과정은 PG-NEM이 더 정확하고 안정적인 근사함수를 제공하는 것을 가능하게 한다. 개발된 포트란 시험 프로그램을 이용하여 대표적인 수치 예제를 수행하였으며, 수치결과로부터 PG-NEM이 효율적이고 정확하게 대변형 문제를 근사화하는 것을 확인하였다.