• Title/Summary/Keyword: edge contact

Search Result 283, Processing Time 0.027 seconds

Non-Steady Elastohydrodynamic Lubrication Analysis on the Cam-Roller of Valve Mechanism for a Marine Diesel Engine (박용디젤기관 밸브기구용 캠-롤러 사이의 비정상상태 탄성유체윤활해석)

  • 구영필;강민호;이득우;조용주
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.201-207
    • /
    • 2000
  • The numerical procedure to analyze a non-steady 3-dimensional elastohydrodynamic lubrication on the cyclically loaded contact has been newly developed. The procedure was applied on the cam-roller contact of the valve mechanism for the marine diesel engine. Both the pressure distribution and the film thickness between the cam and roller follower were calculated for each time step of the whole cycle. The pressure spike is shown at the outlet of the roller edge and it is getting higher as the external load is increased. The film thicknesses in the result of the non-steady analysis have a tendency to increase compared to those in the result of the analysis with the assumption of steady state. Therefore, the surface roughness of the non-steady contact need not be limited below that of the steady contact of the equivalent operating conditions.

Optimization of the Gear Tooth Crowning Amount Considering Contact Subsurface Stress (표면아래응력을 고려한 기어이의 크라우닝 최적화에 관한 연구)

  • Lee, Sang-Don;Kim, Jong-Sung;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • Gear is an essential component of an automotive. Crowning is used for tooth modification of a gear. The basic concept of gear tooth crowning is to reduce the stress concentration in edge of contact area and appropriate profile modifications can help gears to resist scoring, pitting, and tooth breakage. In this study, a method to determinate spur gear tooth crowning amount to make smooth surface stress and subsurface stress distribution is proposed. This method is based on the contact analysis.

Partial-EHL Analysis of wheel Bearing (휠 베어링의 부분탄성유체윤활 해석)

  • Kim D.W.;Lee S.D.;Cho Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.616-621
    • /
    • 2005
  • Most machine element, such as gears and bearings, are operated in the mixed lubrication region. Contact between two asperities has an effect on machine life by increasing local pressure. To estimate fatigue lift exactly, asperity contact should be considered as a factor of fatigue liff because this happening produce friction, abrasion and make flash temperature. In this paper, asperity contact is considered as a result of film breakdown when lubricant pressure is not enough to separate two asperities. Contact pressure is calculated to asperity overlap region and added to lubricant pressure. For this model, numerical procedure is introduced and the result on surface roughness and velocity for wheel bearing is presented. Results of EHL analysis for wheel bearing show that asperity contact is occurred at the edge of EHL conjunction where has a insufficient lubricant pressure to separate two surface.

  • PDF

Contact analysis of spherical ball and a deformable flat model with the effect of tangent modulus

  • Sathish Gandhi, V.C.;Ramesh, S.;Kumaravelan, R.;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.61-72
    • /
    • 2012
  • The paper is on contact analysis of a spherical ball with a deformable flat, considering the effect of tangent modulus on the contact parameters of a non-adhesive frictionless elastic-plastic contact. The contact analysis of this model has been carried out using analysis software Ansys and Abaqus. The contact parameters such as area of contact between two consecutive steps, volume of bulged material are evaluated from the formulated equations. The effect of the tangent modulus is considered for determining these parameters. The tangent modulus are accounted between 0.1E and 0.5E of materials E/Y value greater than 500 and less than 1750. Result shows that upto an optimal tangent modulus values the elastic core push up to the free surface in the flat. The simulation is also carried out in Abaqus and result provide evidence for the volume of bulged material in the contact region move up and flow into the free surface of the flat from the contact edge between the ball and flat. The strain energy of the whole model is varied between 20 to 40 percentage of the stipulated time for analysis.

3D Non-linear Analysis of Interlaminar Stress around the Hole Edge of Orthotropic Laminates (직교이방성 적층판의 Hole단부의 3D 비선형 층간응력 해석)

  • SONG KWAN-HYUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.36-42
    • /
    • 2004
  • Orthotropic laminates, such as [$0^{\circ}6$/$90^{\circ}6$]s and [$90^{\circ}6$/$0^{\circ}6$]s, were performed, using a commercial nonlinear finite element method. Interlaminar stress distributions, around the hole curve free-edge, were calculated. The delamination bearing strengths of pin joints were predicted, using the modified delamination failure criterion. These stress distributions were presented along the radial lines and around the free-edge of the hole. Further, three-dimensional non-linear contact analysis of orthotropic laminates was conducted to investigate the effect of friction. In this paper, laminates with a circular hole were taken to study interlaminar stresses the curved edge. This study may assist in the design of a thick composite laminate with mechanically pin joints.

Analysis of Contact Singular Stresses with Relief Notch by Using Dynamic Photoelasticity(II) (동적 광탄성실험에 의한 응력이완 노치부근에서의 접촉특이응력 해석 (2))

  • Lee, Eok-Seop;Hwang, Si-Won;Nah, Gyeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2097-2107
    • /
    • 1996
  • The dynamic photoelastic technique had been utilized to investigate the possibillity of relieving the large local singular stresses induced at the corner of a right- angle- indenter. The indenter compressed a semi-infinite body dynamically with an impact load applied on the top of the indenter. The effects of the geometric changes of the indenter in terms of the diameter (d) and the location (1) of the stress relieving notch on the behavior of the dynamic contact stresses were investigated. The influence of stress relieving notches positioned along the edge of the semi-infinite body on the dynamic contact stresses were also studied by changing the diameter (D) and the location (L) of the notch. A multi-speak-high speed camera with twelve sparks were used to take photographs of full field dynamic isochromatic fringe patterns. The contact singular stresses were found to be released significantly by the stress relief notches both along the indenter and the edge of the semi-infinite body. The optimal position and geometry of the stress relieving notches were obtained with the aid of limited experimental results.

Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit (피로한도 이하에서 발생하는 압입축의 접촉손상 특성)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Ham, Young-Sam;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

A Study on Non-Contact Care Robot System through Deep Learning

  • Hyun-Sik Ham;Sae Jun Ko
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.33-40
    • /
    • 2023
  • As South Korea enters the realm of an super-aging society, the demand for elderly welfare services has been steadily rising. However, the current shortage of welfare personnel has emerged as a social issue. To address this challenge, there is active research underway on elderly care robots designed to mitigate the social isolation of the elderly and provide emergency contact capabilities in critical situations. Nonetheless, these functionalities require direct user contact, which represents a limitation of conventional elderly care robots. In this paper, we propose a solution to overcome these challenges by introducing a care robot system capable of interacting with users without the need for direct physical contact. This system leverages commercialized elderly care robots and cameras. We have equipped the care robot with an edge device that incorporates facial expression recognition and action recognition models. The models were trained and validated using public available data. Experimental results demonstrate high accuracy rates, with facial expression recognition achieving 96.5% accuracy and action recognition reaching 90.9%. Furthermore, the inference times for these processes are 50ms and 350ms, respectively. These findings affirm that our proposed system offers efficient and accurate facial and action recognition, enabling seamless interaction even in non-contact situations.

Characterization of Surfaces by Contact Angle Goniometry - I. Contact Angle Measurement by Laser Beam Projection- (접촉각측정에 의한 표면의 특성연구 - I. 레이저광선 투영에 의한 접촉각의 측정방법-)

  • Park Chung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.1
    • /
    • pp.70-75
    • /
    • 1991
  • Contact angle measuring device was developed in this laboratory using laser beam projec-tion. The new method allows for rapid and direct determination of stationary, advancing, and receding contact angles on both planar and nonplanar solid surfaces, including fibers with very small diameters. A narrow laser beam impinges on an edge of an interface of liquid and solid. This makes two projected laser beam lines upon and radiating from the center of a protractor scale on a tangent screen. Contact angle is measured by determining the difference in angle on the protractor scale between the two projected laser beam lines. Contact angles measured on Perspex-CQ using this instrument were in agreement with the literature. it was shown that this instrument provides a novel method for the facile and accurate measurement of contact angles.

  • PDF