• Title/Summary/Keyword: edentulous

Search Result 690, Processing Time 0.026 seconds

Convolutional neural networks for automated tooth numbering on panoramic radiographs: A scoping review

  • Ramadhan Hardani Putra;Eha Renwi Astuti;Aga Satria Nurrachman;Dina Karimah Putri;Ahmad Badruddin Ghazali;Tjio Andrinanti Pradini;Dhinda Tiara Prabaningtyas
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.271-281
    • /
    • 2023
  • Purpose: The objective of this scoping review was to investigate the applicability and performance of various convolutional neural network (CNN) models in tooth numbering on panoramic radiographs, achieved through classification, detection, and segmentation tasks. Materials and Methods: An online search was performed of the PubMed, Science Direct, and Scopus databases. Based on the selection process, 12 studies were included in this review. Results: Eleven studies utilized a CNN model for detection tasks, 5 for classification tasks, and 3 for segmentation tasks in the context of tooth numbering on panoramic radiographs. Most of these studies revealed high performance of various CNN models in automating tooth numbering. However, several studies also highlighted limitations of CNNs, such as the presence of false positives and false negatives in identifying decayed teeth, teeth with crown prosthetics, teeth adjacent to edentulous areas, dental implants, root remnants, wisdom teeth, and root canal-treated teeth. These limitations can be overcome by ensuring both the quality and quantity of datasets, as well as optimizing the CNN architecture. Conclusion: CNNs have demonstrated high performance in automated tooth numbering on panoramic radiographs. Future development of CNN-based models for this purpose should also consider different stages of dentition, such as the primary and mixed dentition stages, as well as the presence of various tooth conditions. Ultimately, an optimized CNN architecture can serve as the foundation for an automated tooth numbering system and for further artificial intelligence research on panoramic radiographs for a variety of purposes.

Fabrication of implant-associated obturator after extraction of abutment teeth: a case report (지대치 발거 후 임플란트 연관 상악 폐색장치 제작 증례보고)

  • Ki-Yeol Jang;Gyeong-Je Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.229-236
    • /
    • 2023
  • Maxillary bone defects may follow surgical treatment of benign and malignant tumors, trauma, and infection. Palatal defects often lead to problems with swallowing and pronunciation from the leakage of air into the nasal cavity and sinus. Obturators have been commonly used to solve these problems, but long-term use of the device may cause irritation of the oral mucosa or damage to the abutment teeth. Utilizing implants in the edentulous area for the fabrication of the obturators has gained attention. This case report describes a patient, who had undergone partial resection of the maxilla due to adenocarcinoma, in need of a new obturator after losing abutment teeth after long-term use of the previous obturator. Implants were placed in strategic locations, and an implant-retained maxillary obturator was fabricated, showing satisfactory results in the rehabilitation of multiple aspects, including palatal defect, masticatory function, swallowing, pronunciation, and aesthetics.

Interproximal contact loss between implant-supported prostheses: a clinical report (임플란트 고정성 보철물 사이에서의 인접면 접촉상실: 증례보고)

  • Yeon-Hee Park;Kyoung-A Kim;Jung-Jin Lee;Jae-Min Seo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.1
    • /
    • pp.47-53
    • /
    • 2024
  • Interproximal contact loss (ICL) is the most frequent complication in partially edentulous patients treated with implant-supported prostheses. However, in most cases, ICL occurs between the implant prosthesis and the natural tooth due to the movement of the natural tooth. There are several causes of ICL that occur between an implant prosthesis and a natural tooth. There are only a few reported cases of ICL occurring between implant prostheses, and explaining the causes of ICL between implant prostheses and natural teeth is challenging. This clinical report describes cases of ICL between implant prostheses and discusses its causes and countermeasures.

Linear measurement evaluation according to UV-type ultrasonic cleaning of artificial teeth for temporary dentures manufactured using a light-curing type printer produced by a DLP printer (광중합형 프린터로 제작한 임시 의치용 인공치아의 UV형 초음파 세척에 따른 선형측정 평가)

  • Dong-Yeon Kim;Gwang-Young Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Purpose: This study compares the deformation of traditional resin dentures to resin dentures printed with digital light processing (DLP). Methods: Eleven edentulous research models were developed. Ten of them were made with traditional resin dentures. The remaining one was prepared for scanning and 3D (three-dimensional) printing. Ten traditional resin dentures were made, with the remaining artificial teeth created using 3D software and a DLP printer. Traditional resin dentures, 3D printed resin denture artificial teeth, and a denture base with artificial teeth were all cleaned simultaneously in an ultrasonic cleaner for 3 minutes. Three groups were assigned four artificial tooth measurement points, which were then measured with digital calipers. The measured data was analyzed using descriptive statistics. The significance test was conducted using a nonparametric test Kruskal-Wallis test due to the small number of specimens (α=0.05). Results: The traditional resin dentures had the lowest strain rate at -0.04%, while the group that manufactured only artificial teeth had the highest strain rate at -0.09%. However, no statistically significant difference was observed between the 3 groups (p>0.05). Conclusion: During ultraviolet-type ultrasonic cleaning, traditional resin dentures (TD group) and denture base with artificial teeth made of DLP (DD group) demonstrated stable durability, whereas the artificial teeth made of DLP (AD group) with only artificial teeth did not show a good deformation rate.

Effects of a modified surgical protocol on the positional accuracy of dental implants placed using fully guided implant surgery in the partially edentulous posterior ridge with distal extension: a dentiform model study

  • Young Woo Song;Seung Ha Yoo;Ui-Won Jung
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • PURPOSE. The present experiment aimed to evaluate the placement accuracy of fully guided implant surgery using a mucosa-supported surgical guide when the protocol of osteotomy and installation was modified (MP) compared to when the protocol was sequentially and conventionally carried out (CP). MATERIALS AND METHODS. For 24 mandibular dentiform models, 12 dentists (6 experts and 6 beginners) performed fully guided implant placements two times at the right first and second molar sites using a mucosa-supported surgical guide, once by the CP (CP group) and at the other time by the MP (MP group). The presurgical and postsurgical stereolithographic images were superimposed, and the deviations between the virtually planned and actually placed implant positions and the procedure time were compared statistically (P < .05). RESULTS. The accuracies were similar in the CP and MP groups. In the CP group, the mean platform and apex deviations at the second molar site for the beginners were +0.75 mm and +1.14 mm, respectively, which were significantly larger than those for the experts (P < .05). In the MP group, only the mean vertical deviation at the second molar site for the beginners (+0.53 mm) was significantly larger than that for the experts (P < .05). The procedure time was significantly longer for the MP group (+94.0 sec) than for the CP group (P < .05). CONCLUSION. In fully guided implant surgery using a mucosa-supported guide, the MP may improve the placement accuracy when compared to the CP, especially at sites farther from the most-posterior natural tooth.

Evaluation of trueness of maxillary and mandibular denture bases produced with a DLP printer by immersion in a constant temperature water bath (DLP 프린터로 제작한 상악 및 하악 의치상의 항온수조 침적에 따른 진실도(trueness) 평가)

  • Dong-Yeon Kim;Gwang-Young Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Purpose: To evaluate the three-dimensional trueness of upper and lower denture bases produced using a digital light processing (DLP) printer and immersed in a constant-temperature water bath. Methods: An edentulous model was prepared and fitted with denture bases and occlusal rims manufactured using base plate wax. After scanning the model, denture bases, and occlusal rims, complete denture designs were created. Using the designs and a DLP printer, 10 upper and 10 lower complete dentures were manufactured. Each denture was scanned before (impression surface of upper denture base before constant temperature water bath [UBC] and impression surface of lower denture base before constant temperature water bath [LBC] groups) and after (impression surface of upper denture base after constant temperature water bath [UAC] and impression surface of lower denture base after constant temperature water bath [LAC] groups) immersion in the constant-temperature water bath. Scanned files were analyzed by comparing reference and scanned data, with statistical analysis conducted using the Kruskal-Wallis test (α=0.05). Results: Statistical analysis revealed no significant differences between the UBC and LBC groups, nor between the UAC and LAC groups (p>0.05). However, significant differences were observed between the UBC and UAC groups and between the LBC and LAC groups, i.e., before and after the constant-temperature water bath for both maxillary and mandibular denture bases (p<0.05). Conclusion: Denture bases not immersed in the constant-temperature water bath (UBC and LBC groups) exhibited error values within 100 ㎛, whereas those immersed in the water bath (UAC and LAC groups) showed error values exceeding 100 ㎛.

The treatment of an edentulous patient with DENTCA$^{TM}$ CAD/CAM Denture (CAD/CAM Denture를 이용한 완전 무치악 환자 수복 증례)

  • Park, Joon-Ho;Cho, In-Ho;Shin, Soo-Yeon;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Nowadays, CAD/CAM is broadly used in dentistry for inlays, crowns, implant abutments and its spectrum is expanding to complete dentures. Utilizing CAD/CAM to fabricate complete dentures is expected to decrease chair time and the number of visits, thus decreasing total fabrication time, expenses and errors caused during fabrication processes. One of the systems using CAD/CAM, DENTCA$^{TM}$ CAD/CAM denture (DENTCA Inc. Los Angeles, USA) scans edentulous impressions, designs dentures digitally, fabricates try-in dentures by 3D printing and converts them into final dentures. Patients can wear final dentures after only 2 - 3 visits with satisfying adaptation. This case report introduces a 71-year-old male patient who visited to consult remaking of existing old dentures. Residual teeth with bad prognosis and root remnants were extracted and the patient used reformed existing mandibular denture for 2 months. And then DENTCA system started. One-step border molding was done using conventional tray of adequate size provided by DENTCA system and wash impression was taken. Gothic arch tracing was completed based on the vertical dimension of existing dentures. Both maxillary and mandibular trays were placed to the resultant centric relation and bite registration was taken. Then DENTCA scanned the bite registration, arranged the teeth, completed the festooning and fabricated the try-in dentures by 3D printing. The try-in dentures were positioned, occlusal plane and occlusal relations were evaluated. The try-in dentures were converted to final dentures. To create bilateral balanced occlusion, occlusal adjustment was done after clinical remounting using facebow transfer. The result was satisfactory and it was confirmed by patient and operator.

A Study on the Stress Distribution of Condylar Region and Edentulous Mandible with Implant-Supported Cantilever Fixed Prostheses by using 3-Dimensional Finite Element Method (임플란트 지지 캔틸레버 고정성 보철물 장착시 과두와 하악골의 응력 분포에 관한 3차원 유한요소법적 연구)

  • Kim, Yeon-Soo;Lee, Sung-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.283-305
    • /
    • 2001
  • The purpose of this study was to analyze the stress distribution of condylar regions and edentulous mandible with implant-supported cantilever prostheses on the certain conditions, such as amount of load, location of load, direction of load, fixation or non-fixation on the condylar regions. Three dimensional finite element analysis was used for this study. FEM model was created by using commercial software, ANSYS(Swanson, Inc., U.S.A.). Fixed model which was fixed on the condylar regions was modeled with 74323 elements and 15387 nodes and spring model which was sprung on the condylar regions was modeled with 75020 elements and 15887 nodes. Six Br${\aa}$nemark implants with 3.75 mm diameter and 13 mm length were incorporated in the models. The placement was 4.4 mm from the midline for the first implant; the other two in each quardrant were 6.5 mm apart. The stress distribution on each model through the designed mandible was evaluated under 500N vertical load, 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. The load points were at 0 mm, 10 mm, 20 mm along the cantilever prostheses from the center of the distal fixture. The results were as follows; 1. The stress distribution of condylar regions between two models showed conspicuous differences. Fixed model showed conspicuous stress concentration on the condylar regions than spring model under vertical load only. On the other hand, spring model showed conspicuous stress concentration on the condylar regions than fixed model under 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. 2. Fixed model showed stress concentration on the posterior and mesial side of working and balancing condylar necks but spring model showed stress concentration on the posterior and mesial side of working condylar neck and the posterior and lateral side of balancing condylar neck under vertical load. 3. Fixed model showed stress concentration on the posterior and lateral side of working condylar neck and the anterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior sides of working and balancing condylar necks under horizontal load linguobuccally. 4. Fixed model showed stress concentration on the posterior side of working condylar neck and the posterior and lateral side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 20 degree oblique load. 5. Fixed model showed stress concentration on the anterior and lateral side of working condylar neck and the posterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 45 degree oblique load.. 6. The stress distribution of bone around implants between two models revealed difference slightly. In general, magnitude of Von Mises stress was the greatest at the bone around the most distal implant and the progressive decrease more and more mesially. Under vertical load, the stress values were similar between implant neck and superstructure vertically, besides the greatest on the distal side horizontally. 7. Under horizontal load linguobuccally, buccal 20 degree oblique load and buccal 45 degree oblique load, the stress values were the greatest on the implant neck vertically, and great on the labial and lingual sides horizontally. After all, it was considered that spring model was an indispensable condition for the comprehension of the stress distributions of condylar regions.

  • PDF

Clinical Comparison of Immediately Loaded and Delayed Loaded OSSTEM GS III Implant in Partially Edentulous Patients (자연치 부분 결손 환자에서 테이퍼 형태의 국산 임플란트(OSSTEM GS III)의 즉시하중 성공률에 대한 지연하중군과의 비교 임상연구)

  • Kwon, Min-Jung;Kim, Young-Kyun;Yeo, In-Sung;Yi, Yang-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.3
    • /
    • pp.267-275
    • /
    • 2011
  • This prospective study was designed to compare clinical outcomes of immediately loaded implant with delayed loaded implant in partially posterior edentulous patients. For test group, 42 GS III (Osstem, Korea) implants in 17 patients were loaded within 48 hours after the placement. Control group was 27 implants in 15 patients loaded at $2.6{\pm}1.7months$ from the placement surgery. Before loading, primary stability was evaluated by ISQ value. Clinical symptoms, mobility, soft tissue state was evaluated at baseline, 3 months, 6 months and 12 months of loading. Marginal bone level change was also measured with periapical radiographs. Mann-Whitney test (${\alpha}$=0.05) and repeated measured ANOVA (${\alpha}$=0.05) was used for marginal bone level change between two groups. At the baseline, mean ISQ value of test group and control group was $80.3{\pm}7.1$ and $69{\pm}17$ respectively. Test group showed 95.23% of success rate and 100% of control group was successful. At 3 and 6months of loading, significantly more bone resorption was observed in test group than in control group (p<0.05). However, there was no significant difference in the bone level change at 12months of loading between two groups (p>0.05). Marginal bone level change showed no significant difference with gender and location (p>0.05). Within the limitation of this study, when primary stability was obtained, immediate loading of GS III implant at posterior region could be predictable treatment option.

Comparison of fatigue fracture strength by fixture diameter of mini implants (미니 임플란트 직경에 따른 피로파절강도의 비교 연구)

  • Heo, Yu-Ri;Son, Mee-Kyoung;Kim, Hee-Jung;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.156-161
    • /
    • 2012
  • Purpose: This study was conducted to obtain difference in fracture strength according to the diameter of one-body O-ring-type of mini implant fixture, to determine the resistance of mini implant to masticatory pressure, and to examine whether overdenture using O-ring type mini implant is clinically usable to maxillary and mandibular edentulous patients. Materials and methods: For this study, 13 mm long one body O-ring-type mini implants of different diameters (2.0 mm, 2.5 mm and 3.0 mm) (Dentis, Daegu, Korea) were prepared, 5 for each diameter. The sample was placed at $30^{\circ}$ from the horizontal surface on the universal testing machine, and off-axis loading was applied until permanent deformation occurred and the load was taken as maximum compressive strength. The mean value of the 5 samples was calculated, and the compressive strength of implant fixture was compared according to diameter. In addition, we prepared 3 samples for each diameter, and applied loading equal to 80%, 60% and 40% of the compressive strength until fracture occurred. Then, we measured the cycle number on fracture and analyzed fatigue fracture for each diameter. Additionally, we measured the cycle number on fracture that occurred when a load of 43 N, which is the average masticatory force of complete denture, was applied. The difference on compressive strength between each group was tested statistically using one-way ANOVA test. Results: Compressive strength according to the diameter of mini implant was $101.5{\pm}14.6N$, $149{\pm}6.1N$ and $276.0{\pm}13.4N$, respectively, for diameters 2.0 mm, 2.5 mm and 3.0 mm. In the results of fatigue fracture test at 43 N, fracture did not occur until $2{\times}10^6$ cycles at diameter 2.0 mm, and until $5{\times}10^6$ cycles at 2.5 mm and 3.0 mm. Conclusion: Compressive strength increased significantly with increasing diameter of mini implant. In the results of fatigue fracture test conducted under the average masticatory force of complete denture, fracture did not occur at any of the three diameters. All of the three diameters are usable for supporting overdenture in maxillary and mandibular edentulous patients, but considering that the highest masticatory force of complete denture is 157 N, caution should be used in case diameter 2.0 mm or 2.5 mm is used.