• Title/Summary/Keyword: edema model

Search Result 234, Processing Time 0.026 seconds

The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells (Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향)

  • Ahn, Joong-Hyun;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.2
    • /
    • pp.172-183
    • /
    • 1999
  • Background: Nitric oxide is a short-lived effector molecule derived from L-arginine by the nitric oxide synthase(NOS). Nitric oxide plays a role in a number of physiologic and pathophysiologic functions including host defense, edema formation, and regulation of smooth muscle tone. Some kinds of cells including macrophage are known to produce large quantities of nitric oxide in response to inflammatory stimuli such as interleukin-$1\beta$(IL-$1\beta$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), interferon-$\gamma$(IFN-$\gamma$) and lipopolysaccharide(LPS). Reactive oxygen species are also known to be important in the pathogenesis of acute cell and tissue injury such as acute lung injury model Methods: Using the RA W264.7 cells, we have examined the ability of oxidant hydrogen peroxide($H_2O_2$) to stimulate nitric oxide production and inducible NOS mRNA expression. Also, we have examined the effects of NOS inhibitors and antioxidants on $H_2O_2$ induced nitric oxide production. Results: Stimulation of RAW264.7 cells with combinations of 100 ng/ml IL-$1\beta$, 100 ng/ml TNF-$\alpha$, and 100 U/ml IFN-$\gamma$ or 100 U/ml IFN-$\gamma$ and $1{\mu}g/ml$ LPS induced the synthesis of nitric oxide as measured by the oxidation products nitrite($NO_2^-$) and nitrate($NO_3^-$). Addition of $250 {\mu}M-2$ mM $H_2O_2$ to the cytokines significantly augmented the synthesis of $NO_2^-$ and $NO_3^-$(p<0.05). When cells were incubated with increasing concentrations of $H_2O_2$ in the presence of IL-$1\beta$, TNF-$\alpha$ and IFN-$\gamma$ at constant level, the synthesis of $NO_2^-$ and $NO_3^-$ was dose-dependently increased(p<0.05). $N^G$-nitro-L-arginine methyl ester(L-NAME), dose dependently, significantly inhibited the formation of $NO_2^-$ and $NO_3^-$ in cells stimulated with LPS, IFN-$\gamma$ and $H_2O_2$ at constant level(p<0.05). Catalase significantly inhibited the $H_2O_2$-induced augmentation of cytokine-induced $NO_2^-$ and $NO_3^-$ formation(p<0.05). But, boiled catalase did not produce a significant inhibition in comparison with the native enzyme. Another antioxidant 2-mercaptoethanol and orthophenanthroline dose-dependently suppressed $NO_2^-$ and $NO_3^-$ synthesis(p<0.05). Northern blotting demonstrated that H:02 synergistically stimulated the cytokine-induced iNOS mRNA expression in RA W264.7. Conclusion: These results suggest that $H_2O_2$ contributes to inflammatory process by augmenting the iNOS expression and nitric oxide synthesis induced by cytokines.

  • PDF

Development of Smart Packaging for Cream Type Cosmetic (크림 제형 화장품용 스마트 패키징 기술 개발)

  • Jeon, Sooyeon;Moon, Byounggeoun;Oh, Jaeyoung;Kang, Hosang;Jang, Geun;Lee, Kisung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.79-87
    • /
    • 2019
  • The degree of cosmetic's oxidation depends on the storage conditions and external conditions when using the product. The microbial contamination and oxygen exposure often results in the quality deterioration of cosmetics. In addition, the problem is that consumers often use cream-type cosmetics, which have short expiration period (6-12 months), even after the product is expired. When using the deteriorated cosmetics, it can be fatal to consumers' safety including some symptoms such as folliculitis, rashes, edema, and dermatitis. Therefore, it is necessary to develop sealed smart packaging for cosmetics to prevent the deterioration of cosmetics and improve consumer safety. In this study, we have developed smart packaging design for cosmetics that can measure the surrounding environment and expiration date for the cosmetics in the real time. In addition, the smart packaging includes sensor, which are linked to the mobile application. Users can find out the measurement results through the application. Also, the packaging design and functions were set up based on the survey results by the user and feasible model can be produced based on user choice. The measurement in the three environment has been done after manufactured the sensor, PCB, and mobile application. As a result, it works normally within a certain range under all three environmental conditions. It is believed that the information on expiration dates and storage environment can be efficiently delivered to the consumers through developed cosmetics smart packaging and applications. The development of UI/UX design for consumer is further studied. The UX/UI design of the application plays an essential role in achieving this goal through the commercialization the cosmetic products in the wide range.

Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages (유근피 추출물이 대식세포 면역조절에 미치는 영향)

  • Kwon, Da Hye;Kang, Hye-Joo;Choi, Yung Hyun;Chung, Kyung Tae;Lee, Jong Hwan;Kang, Kyung Hwa;Hyun, Sook Kyung;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2016
  • The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.

Medicinal Herb Extracts Attenuate 1-Chloro-2,4dinitrobenzene-induced Development of Atopic Dermatitis-like Skin Lesions (한약재 단일 추출물 및 복합 추출물을 이용한 아토피성 피부염 억제 효과)

  • Lee, Moon Hee;Han, Min Ho;Yoon, Jung Jeh;Song, Myung Kyu;Kim, Min Ju;Hong, Su Hyun;Choi, Byung Tae;Kim, Byung Woo;Hwang, Hye Jin;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.851-859
    • /
    • 2014
  • The present study was designed to investigate whether ethanol extracts of Sophora flavescens (GS), Glycyrrhiza uralensis (GC), Dictamnus dasycarpus (BSP), and their mixtures (GGB-1, -2, -3, and -4) inhibit 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD) in a mouse model. DNCB was topically applied on the dorsal surface of Balb/c mice to induce AD-like skin lesions. The pathological phenotypes of AD, such as erythema, ear thickness, edema, scabs, and discharge, were significantly decreased in the GGB (DNCB + GS:GC:BSP = 3:1:1 mixture)-1-treated groups compared with the other treated groups. The weight of the spleen in immune organs was significantly decreased in the GGB-1-treated groups, whereas the weight of the liver in a control group was similar to that of the groups treated with the samples. Furthermore, toluidine blue staining analysis, a method used to specifically identify mast cells, showed that master cell infiltration into the dermis of the GGB-1-treated group was significantly decreased. The immunoglobulin E concentration was lower in the GGB-1-treated group. In addition, the levels of inflammatory cytokines (interferon-${\gamma}$, interleukin-1, 4, 5, 6, and 13, $1{\beta}$, and tumor necrosis factor-${\alpha}$) were also significantly reduced in the GGB-1-treated group. Taken together, these results suggest that a mixture of GS, GC, and BSP in a proportion of 3:1:1 (GGB-1) may contribute to the relief of AD symptoms and may be considered an excellent candidate for an AD therapeutic drug.