• Title/Summary/Keyword: eddy current method

Search Result 371, Processing Time 0.025 seconds

Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes (다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석)

  • Lee, Ji-Ho;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Kim, Jin-Sub;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology (반응표면분석법을 이용한 전도성물질의 절연코팅 프로세스의 최적화)

  • Sim, Chol-Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data ($Adj-R^2=0.944$). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was $530k{\Omega}{\cdot}cm$.

Preliminary study on a 3D field permanent magnet flux switching machine - from tubular to rotary configurations

  • Wang, Can-Fei;Shen, Jian-Xin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.505-508
    • /
    • 2012
  • A permanent magnet flux switching (PMFS) machine has a simple rotor, whilst both magnets and coils are set in the stator, resulting in easy removal of heat due to both copper loss and eddy current loss in magnets. However, the volume of magnets used in PMFS machines is usually larger than in conventional PM machines, and leakage flux does exist at the non-airgap side. To make full use of the magnets and gain higher power density, a novel 3-dimensional (3D) field PMFS machine is developed. It combines merits of the tubular linear machine, external-rotor rotary machine and axial-flux rotary machine, hence, offers high power density and peak torque capability, as well as efficient utility of magnets owing to the unique configuration of triple airgap fields.

Short Circuit Force and Eddy Current Loss Calculation using Image Method for Power Transformer (자기영상법을 이용한 전력용변압기 단락기계력 및 와전류 손실 계산)

  • Heo, Woo-Heng;Park, Jung-Ho;Cho, Ik-Choon;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.77-79
    • /
    • 2006
  • 변압기에서 단락기계력에 대한 계산 분야는 수직력에 의한 Beam Bending, Tillting, 절연물 압축력과 수평력에 의한 Hoop, Compression 등이 있다. 본 논문은 전력용변압기 내부의 자계를 자기영상법을 이용하여 구하고 계산된 자계를 이용하여 단락 기계력을 구하는 방법을 제안하고자 한다. 또한 기존 FEM과 자기영상법과의 계산결과를 비교하였다.

  • PDF

Electromagnetic field analysis and performance characteristics of PMSM/G with Halbach magnetized array rotor (Halbach 자화 배열 회전자를 갖는 영구자석 동기 전동발전기의 전자기적 해석 및 성능 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Ko, Kyoung-Jin;Choi, Sang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.86-88
    • /
    • 2008
  • The rotational loss is one of the most important problems for the practical use of the high power Flywheel Energy Storage System (FESS). This rotational loss is divided as the mechanical loss by windage and bearing and iron loss by hysteresis loop and eddy current in the part of the magnetic field. So, In this paper, a double-sided PMSM/G without the iron loss is designed by analytical method of the magnetic field and estimation of the back-EMF constant represented as the design parameter. This design model consists of the double-sided PM rotor with Halbach magnetized any and coreless 3-phase winding stator. The results show that the double-sided PMSM/G without iron loss can be applicable to the high power FESS.

  • PDF

Development of an Electromagnetic Nondestructive Testing Method for the Prevention of Defects in Steam Generator Tubes at Nuclear Power Plant (원자력발전소 증기발생기 전열관의 결함발생 예방을 위한 전자기 비파괴 검사방법 개발)

  • Shin, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.83-85
    • /
    • 1996
  • Major cause of defects in steam generator tubes at nuclear power plant is the accumulation of magnetite and other byproducts of corrosion in the crevice gap between support plates and tubes. Since damaged tubes result in contamination of the secondary coolant by the radioactive primary coolant, they represent a safety hazard. Early detection of magnetite buildup is, therefore, imperative in order to take remedial measures such as chemical flushing. Although the eddy current testing is being used for the inspection of steam generator tubes, the interpretation of resulting signals is generally a difficult task. This paper uses the phase of sensor coil emf as the test signal to find a way of easier signal interpretation. Numerical study using FEM shows that the shape of resulting signal is good for identifying the relative position of the probe to the support plate, and for discreminating the different shapes and degrees of magnetite buildup in the crevice gap region.

  • PDF

Calculation of Temperature Rise in Gas Insulated Busbar by Coupled Magneto-Thermal-Fluid Analysis

  • Kim, Hong-Kyu;Oh, Yeon-Ho;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.510-514
    • /
    • 2009
  • This paper presents the coupled analysis method to calculate the temperature rise in a gas insulated busbar (GIB). Harmonic eddy current analysis is carried out and the power losses are calculated in the conductor and enclosure tank. Two methods are presented to analyze the temperature distribution in the conductor and tank. One is to solve the thermal conduction problem with the equivalent natural convection coefficient and is applied to a single phase GIB. The other is to employ the computational fluid dynamics (CFD) tool which directly solves the thermal-fluid equations and is applied to a three-phase GIB. The accuracy of both methods is verified by the comparison of the measured and calculated temperature in a single phase and three-phase GIB.

Corrosion Detection of ACSR Power Lines Using Non-Destructive Test Method (비파괴 탐상에 의한 ACSR 전선의 결함 검출)

  • Kang, J.W.;Jang, T.I.;Min, B.W.;Kim, B.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1712-1714
    • /
    • 2001
  • This paper deals with the development and application of an inner corrosion detector for the ACSR(Aluminum Conductor Steel Reinforced) power lines. The detector runs on an ACSR power line and inspects the inner corrosion of the conductor using the technology of the nondestructive eddy current test. It is consists of an ECT sensor, signal processing units, a RF transmitter/receiver, and etc.. The experimental result through field tests shows the detector can efficiently find both the zinc and aluminum loss of ACSR power lines.

  • PDF

A study on the Characteristics of Braking for High Speed Train through On-line Test (시운전시험을 통한 고속철도 차량의 제동 특성에 관한 연구)

  • 김석원;김영국;박찬경;목진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.212-217
    • /
    • 2004
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely train at its pre-decided position, it is necessary to combine properly the various brakes. The prototype of Korean high speed train (KHST) has been designed, fabricated and tested by the domestic researchers. It has adopted a combined electrical brakes, such as rheostatic brake, regenerative brake and eddy current brake, and mechanical brakes composed of disc brake, wheel disc brake and tread brake. In this paper, the performances and control algorithms of braking system have been reviewed by the experimental method.

  • PDF

Power and loss characteristics of PMSM/G with double-sided Halbach magnetized rotor (양측식 Halbach 자화 회전자를 갖는 영구자석 동기 전동발전기의 출력 및 손실 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Sang-Kyou
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.723-724
    • /
    • 2008
  • The rotational loss is one of the most important problems for the practical applications of PM synchronous motor/generator. This rotational loss is divided as the mechanical loss by windage and bearing and iron loss by hysteresis loop and eddy current in the part of the magnetic field. So, In this paper, a double-sided PMSM/G without the iron loss is designed by analytical method of the magnetic field and estimation of the back-EMF constant represented as the design parameter. This design model consists of the double-sided PM rotor with Halbach magnetized array and coreless 3-phase winding stator. The results show that the double-sided PMSM/G without iron loss can be applicable to the required system without the rotational loss.

  • PDF