• 제목/요약/키워드: ectopic expression

검색결과 170건 처리시간 0.025초

Jurkat T 세포에 있어서 ρ-fluorophenylalanine에 의해 유도되는 세포자살의 Bcl-2 및 Bcl-xL에 의한 저해 기전 (Ectopic expression of Bcl-2 or Bcl-xL suppresses p-fluorophenylalanine-induced apoptosis through blocking mitochondria-dependent caspase cascade in human Jurkat T cells)

  • 한규현;오현지;전도연;김영호
    • 생명과학회지
    • /
    • 제13권1호
    • /
    • pp.118-127
    • /
    • 2003
  • Phenylalanine의 구조유사체인 p-fluotophenylalanine (FPA)은 인체 급성백혈병세포주인 Jurkat T 세포의 세포자살을 유도한다. FPA에 의한 세포자살에 미치는 Bcl-2 또는 Bcl-xL의 영향을 조사하기 위해, Bcl-2 또는 Bcl-xL을 stable transfection하거나 empty vectors만을 Transfection한 Jurkat 세포를 이용하여 FPA의 세포독성과 FPA에 의한 세포내 세포자살 신호전달경로를 비교 분석하였다. Jurkt T 세포에 0.63∼3.0 mLf의 FPA를 처리하였을 때 세포의 생육도는 농도에 비례하여 감소하였다. 또한 세포자살관련 DNA fragmentation, caspase-8 activatoin, Bid cleavage, mitochondria로 부터의 cytochrome c 방출, caspase-9 및 -3 activation, PARP degradation 등이 유도되었다. 한편, FPA에 의해 유도되는 이러한 일련의 생화학적 현상들은 Bcl-2 또는 Bcl-xL의 overexpression에 의해 현저히 저해되었다. 이상의 결과들은 caspase-8 activation, Bid cleavage, mitochondnal cytochrome c 방출에 의해 활성화되는 casuase cascade 등의 현상이, Bcl-2 또는 Bcl-xL에 의해 억제됨을 나타내며 FPA에 의해 유도되는 세포자살에 필요한 과정임을 시사한다.

The p110${\gamma}$ PI-3 Kinase is Required for the Mechanism by Which the EphA8-induced Neurites are Modulated by Ephrin-A5 Engagement

  • Park, Soo-Chul
    • Animal cells and systems
    • /
    • 제8권1호
    • /
    • pp.57-63
    • /
    • 2004
  • This study provides evidence that expression of EphA8 receptor in NG108-15 cells results in a substantial increase in the number of neurite-bearing cells. However, the EphA8-induced neurite outgrowth does not require either ephrin-A5 stimulation or ectopic expression of $p110{\gamma}$ PI-3 kinase. In contrast, co-expression of a lipid kinase-inactive $p110{\gamma}$ mutant together with EphA8 causes neurite retraction in the presence of ephrin-A5 stimulation. This effect was not observed in the absence of ephrin-A5 stimulation. Significantly, the tyrosine kinase activity of EphA8 is not important for either of these processes. Taken together, our results strongly suggest that $p110{\gamma}$ PI-3 kinase is critically involved in the regulatory process by which ephrin-A5 exerts effects on the EphA8-induced neurite outgrowth.

Overriding Photoperiod Sensitivity of Flowering Time by Constitutive Expression of a MADS Box Gene

  • N, Gynheung-A
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1996년도 제10회 식물생명공학심포지움 고등식물 발생생물학의 최근 진보
    • /
    • pp.4-9
    • /
    • 1996
  • The majority of plants sense environmental signals, such as day length or temperature, to select their transition timing from vegetative growth t flowering. Here, we report the identification of a regulatory gene, OsMADS1, that controls the photoperiod sensitivity of flowering time. Constitutive expression of OsMADS1 in a long-day flowering plant, Nicotiana sylvestris, resulted in flowering in both short-day long-day conditions. Similarly, ectopic expression of the gene in a short-day flowering plant, N. tabacum cv. Maryland Mammoth, also induced flowering regardless of the day length. The transition time was dependent on the level of the OsMADS1 transcript in transgenic plants. These suggest that OsMADS1 is a key regulatory factor that determines the transition from shoot apex to floral meristem and that it can be used for controlling flowering time in a variety of plant species.

  • PDF

Tubeimoside-1 suppresses breast cancer metastasis through downregulation of CXCR4 chemokine receptor expression

  • Peng, Yaojin;Zhong, Yan;Li, Gao
    • BMB Reports
    • /
    • 제49권9호
    • /
    • pp.502-507
    • /
    • 2016
  • To examine the effect of TBMS1on breast cancer metastasis, and investigate the potential mechanism by which Tubeimoside-1 (TBMS1) inhibits the CXCR4 expression in breast cancer cells. The expression of CXCR4 in breast cancer cell lines was determined by immunoblotting and real-time PCR. The effect of TBMS1 on NF-κB binding activity was evaluated by EMSA assay and ChIP analysis. Cell proliferation and invasion were analyzed by MTT assay and transwell invasion assay, respectively. The effect of TBMS1 on breast cancer metastasis was further evaluated in a metastasis model of nude mice. TBMS1 suppressed the expression of CXCR4 through inhibition of NF-κB binding activity. TBMS1 inhibited CXCL12-induced invasion in breast cancer cells, while ectopic expression of CXCR4 abolished the inhibitive activity of TBMS1. TBMS1 suppressed breast cancer metastasis in the metastatic model of nude mice. TBMS1 suppressed the CXCR4-mediated metastasis of breast cancer by inhibiting NF-κB binding activity.

Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA

  • Wang, Shan;Wang, Ting;Wang, Tao;Jia, Lintao
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.959-965
    • /
    • 2015
  • Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.

Saturated fatty acid-inducible miR-103-3p impairs the myogenic differentiation of progenitor cells by enhancing cell proliferation through Twinfilin-1/F-actin/YAP1 axis

  • Mai Thi Nguyen;Wan Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권3호
    • /
    • pp.277-287
    • /
    • 2023
  • Actin dynamics play an essential role in myogenesis through multiple mechanisms, such as mechanotransduction, cell proliferation, and myogenic differentiation. Twinfilin-1 (TWF1), an actin-depolymerizing protein, is known to be required for the myogenic differentiation of progenitor cells. However, the mechanisms by which they epigenetically regulate TWF1 by microRNAs under muscle wasting conditions related to obesity are almost unknown. Here, we investigated the role of miR-103-3p in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation of progenitor cells. Palmitic acid, the most abundant saturated fatty acid (SFA) in the diet, reduced TWF1 expression and impeded myogenic differentiation of C2C12 myoblasts, while elevating miR-103-3p levels in myoblasts. Interestingly, miR-103-3p inhibited TWF1 expression by directly targeting its 3'UTR. Furthermore, ectopic expression of miR-103-3p reduced the expression of myogenic factors, i.e., MyoD and MyoG, and subsequently impaired myoblast differentiation. We demonstrated that miR-103-3p induction increased filamentous actin (F-actin) and facilitated the nuclear translocation of Yes-associated protein 1 (YAP1), thereby stimulating cell cycle progression and cell proliferation. Hence, this study suggests that epigenetic suppression of TWF1 by SFA-inducible miR-103-3p impairs myogenesis by enhancing the cell proliferation triggered by F-actin/YAP1.

Characterization of TNNC1 as a Novel Tumor Suppressor of Lung Adenocarcinoma

  • Kim, Suyeon;Kim, Jaewon;Jung, Yeonjoo;Jun, Yukyung;Jung, Yeonhwa;Lee, Hee-Young;Keum, Juhee;Park, Byung Jo;Lee, Jinseon;Kim, Jhingook;Lee, Sanghyuk;Kim, Jaesang
    • Molecules and Cells
    • /
    • 제43권7호
    • /
    • pp.619-631
    • /
    • 2020
  • In this study, we describe a novel function of TNNC1 (Troponin C1, Slow Skeletal and Cardiac Type), a component of actin-bound troponin, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of TNNC1 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of TNNC1 was shown to be strongly correlated with increased mortality among LUAD patients. Interestingly, TNNC1 expression was enhanced by suppression of KRAS, and ectopic expression of TNNC1 in turn inhibited KRASG12D-mediated anchorage independent growth of NIH3T3 cells. Consistently, activation of KRAS pathway in LUAD patients was shown to be strongly correlated with down-regulation of TNNC1. In addition, ectopic expression of TNNC1 inhibited colony formation of multiple LUAD cell lines and induced DNA damage, cell cycle arrest and ultimately apoptosis. We further examined potential correlations between expression levels of TNNC1 and various clinical parameters and found that low-level expression is significantly associated with invasiveness of the tumor. Indeed, RNA interference-mediated down-regulation of TNNC1 led to significant enhancement of invasiveness in vitro. Collectively, our data indicate that TNNC1 has a novel function as a tumor suppressor and is targeted for down-regulation by KRAS pathway during the carcinogenesis of LUAD.

Comparison of Ectopic Gene Expression Methods in Rat Neural Stem Cells

  • Kim, Woosuk;Kim, Ji Hyeon;Kong, Sun-Young;Park, Min-Hye;Sohn, Uy Dong;Kim, Hyun-Jung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.23-30
    • /
    • 2013
  • Neural stem cells (NSCs) have the ability to proliferate and differentiate into various types of cells that compose the nervous system. To study functions of genes in stem cell biology, genes or siRNAs need to be transfected. However, it is difficult to transfect ectopic genes into NSCs. Thus to identify the suitable method to achieve high transfection efficiency, we compared lipid transfection, electroporation, nucleofection and retroviral transduction. Among the methods that we tested, we found that nucleofection and retroviral transduction showed significantly increased transfection efficiency. In addition, with retroviral transduction of Ngn2 that is known to induce neurogenesis in various types of cells, we observed facilitated final cell division in rat NSCs. These data suggest that nucleofection and retroviral transduction provide high efficiency of gene delivery system to study functions of genes in rat NSCs.

Homeobox Gene (OSH1) Expression in Embryonic Mutants of Rice (Oryza sativa L.)

  • Hong, Soon-Kwan;Lee, Sang-Lyung;Shin, Young-Boum;Yoon, Kyung-Min;Kim, Nam-Soo
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.81-86
    • /
    • 1998
  • Recent identification and characterization of plant homeobox genes suggest that they play important roles in morphogenetic events. OSH1, one of the rice homeobox genes, is thought to be related to organ development since the changes of OSH1 gene expression cause morphological abnormalities of leaves by the ectopic expression and is expressed during early embryogenesis. In this experiment, the expression pattern of OSH1 was analyzedinmutants by in situ hybridization, and OSH1's potential as a molecular marker was explored. Region-specific expression of OSH1 during early embryogenesis shows that OSH1 could be used as a molecular marker for characterizing embryo mutants. Although several organless and shootless mutants showed normal expression of OSM1, some mutants exhibited abnormal expression patterns. In a minute organless cle1-1 embryo whose epidermis resembled morphologically the epithelium of scutellum, OSH1 expression was limited to a small basal region. This expression pattern suggests the gross deletion of the basal part. In a radicleless mutant, odm115, OSH1 expression was detected in a basal region instead of subcentral region of the ventral side. Together with other characteristics (short embryo and normal adventitious roots), odm115 was estimated to be derived from the deletion of basal region. Among five shootless mutants, three showed normal expression of OSH1. In the shl2 embryo, no expression of OSH1 was observed. In the shl1 embryo, however, OSH1 expression was extended to a dorsal side, indicating that SHL2 might be related to dorsoventral patterning. The above results of in situ hybrydization clearly indicate that OSH1 can be utilized as a marker for characterizing gene functions of embryo mutants.

  • PDF