• Title/Summary/Keyword: economic plants

Search Result 632, Processing Time 0.029 seconds

Development of New Potato Cultivars for the Utilization of Healthy Food with High Biological Function

  • Tae, Lim-Hak;Li, Kui-Hua;Yi, Kyung-Ah;Park, Yong-Sun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2001.11b
    • /
    • pp.25-32
    • /
    • 2001
  • Potatoes have been recognized for a long time as one of the major food crops as well as horticultural crops. Potato production as a table food has been decreased in developed countries, while it has been steadily increased in the third world countries for it importance as food source. It is a new trend to look for the food, not only as a feeding crop but also healthy food. It is also time for the potato producers to look for the potato having high economic value as found in medicinal plants. There are great diversities in potato species, indicating that valuable compounds can be found in different amounts, depending on potato species. We screened the cultivars, breeding clones, and germplasms based on the vitamin C, Vitamin E, antioxidant compounds, diverse sugar types, important amino acids, and other valuable compounds. We could select the breeding clones KC003, 98Wl17, 99j717, and Vally 8 (A group) due to their high levels of antioxidant compounds, and it can be said that most of the red and purple colored potato clones belong to the A group. In the contents of essential amino acids, ‘Taebook Valley’,‘Summer Valley’ and other breeding clones were found to be high in amount. We also made crosses between breeding clones with high biological function and low agronomic traits and low biological function with high quality in agronomic characteristics . The patterns of genetic trends of these offsprings in comparison with their parents will be reported as well. And the potential of using potato as antibody production of anti-cancer will be discussed.

  • PDF

Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder (Rotating cylinder를 이용한 탄소강의 유동가속부식 평가)

  • Park, Tae Jun;Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.257-262
    • /
    • 2012
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work.

Performance Evaluation of Advanced Municipal Wastewater Treatment by Advanced Phase Isolation Ditch (APID) Process (Advanced Phase Isolation Ditch 공정에 의한 하수 고도처리 성능평가)

  • An, Sang-Woo;Kwak, Sung-Keun;Yoon, Yung-Han;Chung, Mu-Keun;Park, Jae-Roh;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.618-625
    • /
    • 2008
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to evaluate the effluent BOD, SS, T-N, and T-P concentrations as process capable and stable parameters for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent BOD, SS, T-N, and T-P concentrations were 4.56, 5.20, 9.30, and 1.75 mg/L at the conventional mode and 3.95, 3.17, 7.65, and 1.18 mg/L at the modified mode. The modified mode (BOD: 3.69, SS: 3.19, T-N: 1.27, and T-P: 0.69) increased the process capability more than the conventional mode (BOD: 1.80, SS: 1.05, T-N: 2.17, and T-P: 0.15) in this study. If process capability over 1.0, this process is capable and stable to treat wastewater. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

  • Cheng, Bo;Kim, Young-Jin;Chou, Peter
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.16-25
    • /
    • 2016
  • In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconiumalloy fuel claddingmaterials are rapidlyheateddue to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF) design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI) is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in $1,200-1,500^{\circ}C$ steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstratedcorrosionresistance.Asthese composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Moalloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are discussed in this document. In addition to assisting plants in meeting Light Water Reactor (LWR) challenges, accident-tolerant Mo-based cladding technologies are expected to be applicable for use in high-temperature helium and molten salt reactor designs, as well as nonnuclear high temperature applications.

A Comparative Study on Teacher-Student Perception of Forest Function in Elementary School (초등학교 내 학교숲 기능에 관한 교사 - 학생간 인식 비교 연구)

  • Kim, Jeong-Ho;Lee, Sang-Hoon;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.519-529
    • /
    • 2018
  • With rapid economic growth, the urban environment has created a problem of human physical and mental illness. In order to solve these problems, urban forests have emerged as a way to mitigate the environmental risks through improving the polluted environment of the city and improve the quality of life. As the urban forests have expanded, the school forests movement has also been taking an important place recently. The study focused on the performance of school forests by comparing the perceptions among teachers and students about their functions. The questionnaire was composed of 4 questions concerning human matters, 10 questions for space recognition, 4 questions for thermal environment, 2 questions for health promotion, and 20 total questions for composition of survey items. The reliability of the school forest function, number of tree planting areas and quantities, the harmony of the planting, and the satisfaction of the school forest were analyzed in the questionnaire conducted by the school members. Although it does not recognize school forests, it has a positive response to the green space that is built outdoors. It is considered that outdoor education and environmental education are sufficient in school forests and green spaces. The results showed that the outdoor green space was more satisfactory when compared with the general school. Teachers and students' preferences were similar to 'seasonal changes' and' trees of various colors and shapes'. The reliability analysis between each item shows that the coefficient for cronbach's ${\alpha}$ was .700 to .834. The purpose of this study is to identify the perception of forest function among school forest members and to utilize them as a basic data in the future.

Thermal Behavior of a Pipe-Rack Structure Subjected to Environmental Factors (외부 환경적 요인에 의한 파이프랙 구조물의 열적 거동)

  • Lee, Jong-Han;Lee, Jong-Jae;Kim, Sung-Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.165-170
    • /
    • 2015
  • Pipe-rack structures supporting high temperature and pressure are of great importance to ensure the safety of the operation of the plants. If some damage occurred in the pipe-rack structure, the facilities not only bring damage to the commercial property, but also result in economic losses. Specially, since pipe-rack structures are exposed to various environmental conditions, it is essential to evaluate the thermal behavior of the structure caused by environmental conditions for the appropriate design and maintenance of the pipe-rack structure. Thus, based on a selected, typical pipe-rack structure, a thermal-stress coupled analysis was conducted to evaluate the temperature distributions and thermal stresses of the structure. For this, this study accounted for the operating condition of the pipe and the effect of environmental conditions, Yeosu in South Korea and Saudi Arabia in the Middle East. The results of the study showed the need for accounting for a variance in the environmental factors to evaluate the thermal behavior of the pipe-rack structure along with the working condition of pipe.

The biodiversity representation assessment in South Korea's protected area network (보호지역 관리를 위한 생물다양성 평가)

  • Choe, Hye-Yeong;James H., Thorne;Joo, Woo-Yeong;Kwon, Hyuk-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • National parks and other protected areas often do not adequately protect national biodiversity because they were originally created for socio-economic and/or aesthetic values. The Korean government has committed to expanding the extent of protected areas to fulfill its commitments to the Aichi Biodiversity Convention. To do so, it is necessary to quantify the current levels of biodiversity representation within existing protected areas and to identify additional conservation needs for vulnerable species and ecological systems. In this study, we assess the proportion of species ranges found in South Korea's protected areas, for the species documented in the 3rd National Ecosystem Survey. We modeled the range distribution of 3,645 species in the following taxonomic groups; plants (1,545 species), mammals (35), birds (132), herptiles (35), and insects (1,898) using the MaxEnt species distribution model and calculated how much of each species' range is within protected areas. On average, 17.4% of plant species' ranges are represented in protected areas, while for mammals and insects an average 12.0% is currently conserved. Conservation representation for herptiles averages 9.3%, while it is 8.6% for birds. Although large proportions of species that have restricted distributions should be represented in protected areas, 17 plant species, two insects (Parnassius bremeri and Lasioglossum occidens), and one bird species (Phylloscopus inornatus) with ranges smaller than 1,000 ㎢ have less than 10% of their ranges within protected areas. Establishing specific conservation goals such as the protection of endangered species or vulnerable taxonomic groups will increase the efficiency of the biodiversity conservation strategies. In addition, lowland coastal areas are critical for biodiversity conservation because the protected areas in South Korea are mainly composed of high mountainous areas.

Efficacy of Three Different Plant Species for Arsenic Phytoextraction from Hydroponic System

  • Tiwari, Sarita;Sarangi, Bijaya Ketan;Pandey, Ram Avatar
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.145-149
    • /
    • 2014
  • Arsenic (As) is one of the heavy metals which causes acute bio-toxicity even at low concentration and has disastrous effect on environment. In some countries, As contamination has become alarming and increasing day by day as consequences of unsustainable management practices. Many existing physical, chemical and biological processes for As removal from water system are not feasible due to techno-economic limitations. The present study highlights the scope of biological strategy for As removal through phytoextraction. Arsenic uptake and accumulation in the biomass of three plant species and their As tolerance abilities have been investigated to develop an efficient phytoextraction system in combination of these plant species. Three non-crop plant species, Pteris vittata; Mimosa pudica, and Eichhornia crassipus were treated with 0-200 mg/L As in liquid nutrient solution for 14 days. P. vittata accumulated total 9,082.2 mg (8,223 mg in fronds) As/kg biomass and Eichhornia total 6,969 mg (4,517 mg in fronds)/kg biomass at 200 mg/L As concentration, respectively. Bioaccumulation factor (BF) and translocation factor (TF) were estimated to differentiate between excluders, accumulators and accumulation in above ground biomass. Pteris and Eichhornia have highest BF (67 and 17) and TF (64 and 3), respectively. In contrast, Mimosa accumulated up to 174 mg As/kg plant biomass which is low in comparison with other two plants, and both BF and TF were ${\leq}1$. This study reveals that Pteris and Eichhornia are As hyperaccumulator, and potential candidates for As removal from water system.

The Engineering Services on the Go Cong Water Control Project in Vietnam (월남국 고콩지구 수리 개발 기본 조사)

  • 조용칠
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2471-2478
    • /
    • 1971
  • Go Cong Water Control Project was conducted on its preliminary survey and design by Agricultural development Corporation for the Korean Government, an Executing Agency, and Directorate of Irrigation and Rural Engineering of the Ministry of Land Reform, Agriculture and Fishery Development for the Vietnamese Government, a cooperation Agency, under Korean and Vietnamese Economic and Technical Cooperation Program. The main purposes of the project are aimed at the improvements of irrigation and drainage, and salt water prevention of the Go Cong area located at northern part of the Mekong Delta. All the works from field survey through design to preparing reports were carried out by ADC alone and recently Korean Government submitted the relevant reports to vietnamese Government through official channel. The contents of the project are summarized as following: 1. The project comprises irrigation, drainage and salt water prevention facilities on the benefited area of about 55,000 hectares, covering Go Cong and Dinh Tuong(My Tho) Provinces and it will be possible to cultivate rice cropping twice a year, irrigating all the area in the dry season; 2. With completion of this project, annual production of rough rice and vegetables are anticipated to increase by 222,600 .T. and 142,600 M.T. respectively and the internal rateof return stants at 26 per cent, applying for the exchange rate of US $ 1 to VN $ 275. 3. Total investments required for the project are estimated at US $ 56,394,000 of which actual construction cost is estimated at US $ 39,183,000. The project has planned to be d to be developed by four stages, taking bout 7 years. 4. The project needs for three places of pumping plants. 57Km of feed and main irrigation canals, 81Km of drainage channels, 97Km of dike, 23 places of sluices and navigation locks, etc.

  • PDF