• Title/Summary/Keyword: economic life cycle

Search Result 473, Processing Time 0.027 seconds

Development Plans by Life-Cycle of Rural Experience Tourism Village using Positioning Analysis - Focused on Hapjeon-village - (상한위치분석을 통한 농촌체험관광마을의 생애주기별 발전방안 -합전마을을 중심으로-)

  • Choi, Aesoon;Jung, Nam Su;Jeong, Dayeong;Song, Yi;Eom, Seong Jun;Choi, Se Hyun;Rhee, Shinho
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.11-22
    • /
    • 2014
  • In this study, the objectives are to provide rural experience tourism village business courses and development direction in between individual farmers and the village in base on rural development business of Hapjeon-village. The developmental process of a farm-stay village can be categorized into the period of six stages: 1) a conception stage 2) an adoption stage 3) a growth stage 4) an expansion stage 5) a stagnation stage 6) a recovery stage. Farm Stay Villages, Individual Farmhouses or Producer Groups can be placed in four different quadrant areas of a graph, depending on the pursuing direction and results of core values by having the X-axis for economic factors (public profits, individual profits) and by having the Y-axis for emotional factors (self-actualization, conflicts). The first quadrant area is designated for ideal individual farmhouses and producer groups for having achieved the status of economic self-reliant and high emotional satisfaction. The second quadrant is for ideal self-actualized communal villages having achieved the independent public interest and public profitable status. The third quadrant is reserved for villages experiencing communal conflicts and no economic self-reliant stagnant status. The fourth guardant area is allocated for individual farmhouses and producer groups having achieved self-reliant economic status, yet having communal conflicts. Using the aforementioned concept, the government shall design village development projects and prepare realistic and achievable goals and place them in as a systematic device in future projects.

Economic Assessment of the Heat Recovery from Incineration Plants Based on Regression Analysis (회귀분석을 이용한 소각장의 소각열 회수 경제성 분석 연구)

  • Yoon, Jungmin;Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.3-12
    • /
    • 2014
  • This study aims at providing an economic assessment for incineration plants which recover heat during its incineration process. In this study, Life Cycle Cost(LCC) of incineration plants is performed based on each regression analysis formula for construction cost, operation cost, and heat generation in order to compare economic feasibility. The result shows that the incineration plant recovering waste heat while processing 80 tons of waste per day increases both initial investment and operation cost but this type of an incineration plant has economical predominance from the recovered waste heat over the one that does not recover heat when being operated for more than eleven years if the retrieved heat replaces the use of LNG. And its payback time reaches more than 19 years in case of selling heat and performing emission trading.

Economic Analysis of Geothermal Energy Facilities Applied to Public Buildings (공공 건축물 지열에너지설비 적용에 따른 경제성 분석)

  • Jang, Young Jun;Kim, Sangyong;Shin, Yoonseok;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.423-432
    • /
    • 2014
  • The aim of this study to propose an efficient method in selecting the type of new and renewable energy applied in at the planning phase of buildings. This study applied geothermal energy facilities with high adaptability to buildings. This study considered the energy reduction and reduced cost by comparing the values with the energy consumption before applying of geothermal energy facilities. In order to propose more reliable criteria of economic evaluation, maintenance costs reflecting the replacement cycles and initial construction costs by drawings and specifications for installation facilities for practical geothermal energy based on construction statement for life-cycle cost analysis. The results will help to effectively select economic types of facilities for new and renewable energy of the planning phase of buildings.

Analysis of Economic Feasibility and Reductions of Carbon Dioxide Emission of Geothermal Heating and Cooling System using Groundwater (지하수를 이용한 지열 냉난방시스템의 경제성 및 이산화탄소 저감량 분석)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol;Cha, Jang-Hwan
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.599-612
    • /
    • 2015
  • The development of renewable energy technologies that can replace fossil fuels is environmentally important; however, such technologies must be economically feasible. Economic analyses are important for assessing new projects such as geothermal heating-cooling systems, given their large initial costs. This study analyzed the economics and carbon dioxide emissions of: a SCW (standing column well), a vertical closed loop boiler, a gas boiler, and an oil boiler. Life cycle cost analysis showed that the SCW geothermal heating-cooling system had the highest economic feasibility, as it had the highest cost saving and also the lowest carbon dioxide emissions. Overall, it appears that geothermal systems can save money when applied to large-scale controlled agriculture complexes and reclaimed land.

Performance Evaluation and Economic Estimation of Ground Source Heat Pump Cooling and Heating System (지열 냉난방 시스템의 성능 및 경제성 평가)

  • Lim Hyo Jae;Song Yoon Seok;Kong Hyoung Jin;Park Seong Koo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.296-300
    • /
    • 2004
  • Performance evaluation and economic estimation were conducted on the water to water GSHP (Ground Source Heat Pump) installed in existing building. Ground heat exchanger was a closed vertical loop type and sized to be 5 boreholes and 100m depth per borehole. Operation efficiency of the system shows that, COP increased from 3.0 to 4.2 with entering water temperature in heating operation, however, COP decreased from 5.0 to 3.7 in cooling operation. Economic estimation was analyzed by LCC (Life Cycle Cost) method and it showed that GSHP could save 68% of cost compare to the conventional oil source. Thus, despite of the large amount of initial cost, GSHP has a economic advantage to the other energy sources.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Optimum Management Plan of the HVAC Equipments with LCC Analysis (LCC 분석을 통한 공기조화 열원설비의 최적 관리방안)

  • Kim, Yong-Ki;Woo, Nam-Sub;Kang, Sung-Ju;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.556-562
    • /
    • 2008
  • The building HVAC systems have very different qualities of performance and durability with the superintendent's ability for management and maintenance. The poor management of these systems finally lead to the shortening of the life expectancy and result in the increase of operating costs and energy consumptions due to low efficiencies. This study presents an example of appropriate use of the LCC(Life Cycle Cost) analysis in a process of maintaining and repairing old HVAC equipments, by demonstrating the difference of optimal economic life, decrease of running cost, and energy consumption according to the management level of the HVAC equipments. But there are no reliable life expectancy and performance history data at present for optimal management of various building service equipments. Therefore, it is necessary to construct long-term database on operation results of them for more accurate and optimized LCC analysis.

Models of Database Assets Valuation and their Life-cycle Determination (데이터베이스 자산 가치평가 모형과 수명주기 결정)

  • Sung, Tae-Eung;Byun, Jeongeun;Park, Hyun-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.676-693
    • /
    • 2016
  • Although the methodology and models to assess the economic value of technology assets such as patents are being presented in various ways, there does not exist a structured assessment model which enables to objectively assess a database property's value, and thus there is a need to enhance the application feasibility of practical purposes such as licensing of DB assets, commercialization transfer, security, etc., through the establishment of the valuation model and the life-cycle decision logic. In this study, during the valuation process of DB assets, the size of customer demand group expected and the amount of demand, the size and importance of data sets, the approximate degree of database' contribution to the sales performance of a company, the life-cycle of database assets, etc. will be analyzed whether they are appropriate as input variables or not. As for most of DB assets, due to irregular updates there are hardly cases their life-cycle expires, and thus software package's persisting period, ie. 5 years, is often considered the standard. We herein propose the life-cycle estimation logic and valuation models of DB assets based on the concept of half life for DB usage frequency under the condition that DB assets' value decays and there occurs no data update over time.

A Study on the Optimal LCC using AMSAA Model (AMSAA Model을 이용한 최적 LCC에 관한 연구)

  • Kim, Jun-Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.3
    • /
    • pp.135-142
    • /
    • 2006
  • Engineers are always concerned with life cycle costs for making important economic decisions through engineering action like reliability of products. Decisions during the reliability growth development of products involve trade-offs between invested costs and its returns. In order to find minimal LCC containing the reliability improvement cost, production cost, repair and replacement costs, and holding cost of spare parts for failure items we suggest in this paper relationship between development cost and sustaining cost in values of growth parameter $\beta$ of AMSAA model. This model is applied to the reliability growth program based on AMSAA model during R&D phase, the warranty activities of items and the block replacement policy for maintenance of items in avionic equipment.