• Title/Summary/Keyword: ecological forest management

Search Result 559, Processing Time 0.027 seconds

Vegetation structure and distribution characteristics of Symplocos prunifolia, a rare evergreen broad-leaved tree in Korea

  • Kim, Yangji;Song, Kukman;Yim, Eunyoung;Seo, Yeonok;Choi, Hyungsoon;Choi, Byoungki
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Background: In Korea, Symplocos prunifolia Siebold. & Zucc. is only found on Jeju Island. Conservation of the species is difficult because little is known about its distribution and natural habitat. The lack of research and survey data on the characteristics of native vegetation and distribution of this species means that there is insufficient information to guide the management and conservation of this species and related vegetation. Therefore, this study aims to identify the distribution and vegetation associated with S. prunifolia. Results: As a result of field investigations, it was confirmed that the native S. prunifolia communities were distributed in 4 areas located on the southern side of Mt. Halla and within the evergreen broad-leaved forest zones. Furthermore, these evergreen broad-leaved forest zones are themselves located in the warm temperate zone which are distributed along the valley sides at elevations between 318 and 461 m. S. prunifolia was only found on the south side of Mt. Halla, and mainly on south-facing slopes; however, small communities were found to be growing on northwest-facing slopes. It has been confirmed that S. prunifolia trees are rare but an important constituent species in the evergreen broad-leaved forest of Jeju. The mean importance percentage of S. prunifolia community was 48.84 for Castanopsis sieboldii, 17.79 for Quercus acuta, and 12.12 for Pinus thunbergii; S. prunifolia was the ninth most important species (2.6). Conclusions: S. prunifolia can be found growing along the natural streams of Jeju, where there is little anthropogenic influence and where the streams have caused soil disturbance through natural processes of erosion and deposition of sediments. Currently, the native area of S. prunifolia is about 3300 ㎡, which contains a confirmed population of 180 individual plants. As a result of these low population sizes, it places it in the category of an extremely endangered plant in Korea. In some native sites, the canopy of evergreen broad-leaved forest formed, but the frequency and coverage of species were not high. Negative factors that contributed to the low distribution of this species were factors such as lacking in shade tolerance, low fruiting rates, small native areas, and special habitats as well as requiring adequate stream disturbance. Presently, due to changes in climate, it is unclear whether this species will see an increase in its population and habitat area or whether it will remain as an endangered species within Korea. What is clear, however, is that the preservation of the present native habitats and population is extremely important if the population is to be maintained and expanded. It is also meaningful in terms of the stable conservation of biodiversity in Korea. Therefore, based on the results of this study, it is judged that a systematic evaluation for the preservation and conservation of the habitat and vegetation management method of S. prunifolia should be conducted.

Vegetation Studies of Girbanr Hills, District Swat, Pakistan (Girbanr Hills의 식생)

  • Hussain, Farrukh;Mohammad Ilyas;Kil, Bong-Seop
    • The Korean Journal of Ecology
    • /
    • v.18 no.2
    • /
    • pp.207-218
    • /
    • 1995
  • Five non-stratified plant communities, Dichanthium-Artemisia-Themeda, Dichanthium- Plectranthes-Themeda, Plectranthes-Carex-Myrine, Heteropogon- Dichanthium-Dodonaea and Artemisia-Cynodon-Ber-beris were recognized in Girbanr hills, District Swat, during autumn, 1992. The indices of similarity showed that the communities were dissimilar. The percentage of leptophyllous and nanophyllous, terophytic and nanophanerophytic species were higher than other groups. These indicate dry and disturben conditions. Due to autumn season most of the species were entering in dormant stage. There was no tree layer on southern slopes while northern slopes had a poor layer of Pinus roxburghii. Deforestation, uprooting, terrace cultivation and overgrazing followed by erosion are the main ecological problems. The presence of isolated trees of Pinus roxburghii and stunted Olea ferruginea indicate that the original vegetation might have been of chirpine or Olea-Pinus type. The area having resource potential can be changed into a forest or rangeland by proper protection and management. Suggestions in favour of improvement are given.

  • PDF

Analysis of Vegetation Recovery Trends by Restoration Method in Wildfire-Damaged Areas Using NDVI Mean-Variance plot (NDVI 평균-분산 도표를 활용한 산불피해지 복원 방법별 식생 회복 경향 분석)

  • Kim, In-hwa;Kim, Yoon-Ji;Chung, Hye-In;Shin Yu-jin;Lee, Sang-Wook;Jeong, Da-yong;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.5
    • /
    • pp.13-25
    • /
    • 2024
  • With the increasing wildfire damage driven by climate change, it is crucial to assess the effectiveness of restoration efforts on a large scale. The majority of forests in Korea are situated in rugged mountainous regions, making it challenging to monitor large-scale wildfires. Consequently, establishing methodologies that use satellite imagery to evaluate restoration effectiveness is essential. This study aims to assess the recovery trends of ecosystems in wildfire-affected areas using NDVI mean-variance plots, which monitor changes in NDVI mean and variance over time through satellite imagery and visually represent the restoration process. The analysis of NDVI mean-variance plots for different restoration methods revealed that landscape restoration had the slowest recovery. This slower recovery is likely due to reduced growth from the complete removal of damaged trees. In contrast to High Severity (HS) areas, Moderate High Severity (MHS) areas showed that commercial afforestation, revegetation, ecological forest treatment led to a more stable recovery state post-disturbance, suggesting that areas with lower wildfire severity may recover more quickly. Furthermore, the recovery trends between artificial and natural restoration showed no significant difference, indicating that natural restoration can have similar restoration effects to artificial restoration in appropriate areas. Therefore, the study emphasizes the need to expand natural restoration areas, considering ecological and economic benefits such as increased biodiversity and genetic resource conservation. This research provides critical baseline data for the formulation and implementation of restoration policies in large-scale wildfire-affected regions and is expected to contribute significantly to the development of effective management strategies and monitoring techniques.

Vegetation Structure of Lower Stratum and Pinus densiflora Natural Regeneration Features from Micro-topography Classification in Pinus densiflora Forest of Anmyeon-do Island (안면도 소나무림 내 미세지형구분을 통한 하층식생구조와 소나무 천연갱신 양상)

  • Byeon, Seong Yeob;Kim, Hyun Seop;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.189-199
    • /
    • 2019
  • The forest management paradigm has recently shifted from focusing on commercial production to focusing on ecosystem management. Accordingly, a natural seedling regeneration method that has a naturally high affinity has attracted much attention in recent years. The aim of this study was to determine the relationship among various environmental factors, lower stratum vegetation, and seedling regeneration in Pinus densiflora forests. The survey site comprised 50 sectors divided using the line transect method, and the survey data were divided into those from wet habitat (19 sites) and dry habitat (31 sites), depending on the soil humidity, and were analyzed separately to show the close relationship between soil humidity and natural seedling regeneration. As a result, the dry habitat exhibited high seedling density (157,419 trees/ha), with the main species being Quercus serrata, Zanthoxylum piperitum, Smilax china, and Pueraria lobata, while wet habitat exhibited low seedling density (57,895 trees/ha), with the main species being Stephanandra incisa, Castanea crenata, Lespedeza maximowiczii, Lysimachia barystachys, Aralia elata, and Styrax japonicus. The height and root-collar diameter under wet conditions exhibited faster growth than those under dry conditions. Height growth by the root-collar diameter in dry habitat increased faster than that in wet habitat. It was also confirmed that seedling regeneration in wet habitat exhibited a rapid growth pattern 5 years after germination. These results suggest that the seedlings begin to grow more rapidly after a period of suppression by competition with surrounding plants. Considering an ecosystem or ecological management approach, specific practices, such as bush control and vine clearing in wet habitats, should be more intensively conducted, especially at the beginning of the management operations.

A Study on the Development of Techniques for Urban Forest Restoration and Management - Focus on the Restoration of Origin Vegetation and Improvement of Biodiversity - (도시림 복원 및 관리 기술의 개발에 관한 연구 - 원식생 복원과 생물다양성 증진을 중심으로 -)

  • Kim, Kwi-Gon;Cho, Dong-GiI;Kim, Nam-Choon;Min, Byung-Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.27-37
    • /
    • 2000
  • This study aims at restoring urban forest destructed and eliminated by industrialization, urbanization, and city development and presenting a direction to manage remaining urban forest ecologically. To this end, an experiment zone where Populus tomentiglandulosa T. Lee were selective cutted and a control zone where Populus tomentiglandulosa T. Lee were kept intact were created in Chongdam Park located in Kangnam-ku, Seoul. Then, the structural changes of herbaceous plant species, the growth of targeted woody plants, and the increase of the number of insect and bird species were examined. The conclusions reached in this study are as follows. First, for the sake of ecological restoration and management of urban forest, it is good to selective cutting. Although timing, frequency, and methods may vary depending on the features and types of urban forest, the study revealed that selective cutting contributes to the restoration speed of origin vegetation and the enhancement of biodiversity including plants and insects. Second, as for the correlations of selective cutting and the appearance of plant species, the growth of origin vegetation, and insect distribution, the study showed that the impact of meteorological environment such as brightness is much greater than that of soil environment. Third, in order to manage urban forest, tramping pressure needs to be controlled efficiently. The efficient control of tramping pressure would contribute in the appearance of herbaceous plants. It would also be beneficial in promoting biodiversity of birds by removing the impact of people using routes. Fourth, in order to enhance the overall biodiversity of urban forest, diverse environment needs to be provided. In particular, it is necessary to supply water that is insufficient in urban forest. Providing habitats such as forest wetland performs an important function to amphibians and birds that require water as well as the appearance of aquatic plants and insects. Therefore, ways to introduce water efficiently should be initiated.

  • PDF

Approaches for Developing a Korean Model Through Analysis of Overseas Forest Soil Carbon Models (해외 산림토양탄소모델 분석을 통한 한국형 모델 개발방안 연구)

  • Lee, Ah-Reum;Yi, Koong;Son, Yo-Whan;Kim, Rae-Hyun;Kim, Choon-Sig;Park, Gwan-Soo;Lee, Kyeong-Hak;Yi, Myong-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.791-801
    • /
    • 2010
  • Forest soil carbon model is a useful tool for understanding complex soil carbon cycle in forests and estimating dynamics of soil carbon to climate change. However, studies on development and application of the model are insufficient in Korea. The need for development of Korean model is now growing, because there are notable problems and limitations for adapting overseas models in Korea to meet the requirements of the international organizations such as IPCC, which demands highly reliable data for national reports. Therefore, we have studied 7 overseas forest soil carbon models (CBM-CFS3, CENTURY, Forest-DNDC, ROMUL, RothC, Sim-CYCLE, YASSO), analyzed and compared their structure, decomposition mechanism, initializing process and, input and output data. Then we evaluated applicability of these models in Korea with three criteria; availability of input data, performance of model, and possibility of regional modification. Finally, a systematic process for applying a new model was suggested based on these analyses.

Consequences of land use change on bird distribution at Sakaerat Environmental Research Station

  • Trisurat, Yongyut;Duengkae, Prateep
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.203-214
    • /
    • 2011
  • The objectives of this research were to predict land-use/land-cover change at the Sakaerat Environmental Research Station (SERS) and to analyze its consequences on the distribution for Black-crested Bulbul (Pycnonotus melanicterus), which is a popular species for bird-watching activity. The Dyna-CLUE model was used to determine land-use allocation between 2008 and 2020 under two scenarios. Trend scenario was a continuation of recent land-use change (2002-2008), while the integrated land-use management scenario aimed to protect 45% of study area under intact forest, rehabilitated forest and reforestation for renewable energy. The maximum entropy model (Maxent), Geographic Information System (GIS) and FRAGSTATS package were used to predict bird occurrence and assess landscape fragmentation indices, respectively. The results revealed that parts of secondary growth, agriculture areas and dry dipterocarp forest close to road networks would be converted to other land use classes, especially eucalyptus plantation. Distance to dry evergreen forest, distance to secondary growth and distance to road were important factors for Black-crested Bulbul distribution because this species prefers to inhabit ecotones between dense forest and open woodland. The predicted for occurrence of Black-crested Bulbul in 2008 covers an area of 3,802 ha and relatively reduces to 3,342 ha in 2020 for trend scenario and to 3,627 ha for integrated-land use management scenario. However, intact habitats would be severely fragmented, which can be noticed by total habitat area, largest patch index and total core area indices, especially under the trend scenario. These consequences are likely to diminish the recreation and education values of the SERS to the public.

Analysis of Composition and Diversity of Natural Regeneration of Woody Species in Jebel El Gerrie Dry Land Forest East of Blue Nile State, Sudan

  • Abuelbashar, Ahmed Ibrahim;Ahmed, Dafa-Alla Mohamed Dafa-Alla;Siddig, Ahmed Ali Hassabelkreem;Yagoub, Yousif Elnour;Gibreel, Haithum Hashim
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.90-101
    • /
    • 2022
  • The study aims to assess composition, diversity and population indices of natural regeneration of woody species in Jebel El Gerrie forest reserve, Blue Nile State, Sudan. We conducted field work between December 2018 and January 2019. We used random sampling to collect vegetation data in the forest where we made a total of 90 circular sample plots (radius 17.84 m) and distributed them proportionally to the area of each of the four density-based vegetation classes of the forest i.e. high density (C1), medium density (C2), low density (C3) and crop land (C4). In each sample plot we identified all regenerating tree species and counted their regeneration frequencies. We calculated ecological metrics of regeneration frequency, density, abundance, richness, evenness, diversity and importance value index (IVI) and drew abundance rank curve. Results revealed that out of fifteen mature tree species present, natural regeneration of 8 species, which belong to 6 families, was observed. The relatively most frequently naturally regenerating and abundant species were Anogeissus leiocarpa and Combretum hartmannianum. Richness, evenness and diversity of regenerating species were 1.33, 0.82 and 1.7, respectively. One-way ANOVA (α=0.05) of mean regeneration densities disclosed that there were significant differences (F3,86=16.77, p=0.000) between C2 & C3 (p=0.000) and C2 & C4 (p=0.000). While regeneration of seven tree species were absent, two, two and four species were of good, poor and fair regeneration status, respectively. A comparison of mean density of natural regeneration with that of parent trees reflects a poor regeneration status of the forest. The study provides empirical results on the regeneration status of species and signifies the need for management interventions for species conservation and restoration, maintenance of biodiversity and sustainable production.

Tree Species Assemblages, Stand Structure, and Regeneration in an Old-Growth Mixed Conifer Forest in Kawang, Western Bhutan

  • Attila Biro;Bhagat Suberi;Dhan Bahadur Gurung;Ferenc Horvath
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.3
    • /
    • pp.210-226
    • /
    • 2024
  • Old-growth mixed-conifer forests in Bhutan are characterized by remarkable tree species compositional heterogeneity. However, our knowledge of tree species assemblages and their structural attributes in these forests has been limited. Therefore, forest classification has been reliant on a single dominant species. This study aimed to distinguish tree species assemblages in an old-growth mixed conifer forest in Western Bhutan and to describe their natural compositional and stand structural characteristics. Furthermore, the regeneration status of species was investigated and the quantity and quality of accumulated coarse woody debris were assessed. Ninety simple random sampling plots were surveyed in the study site between 3,000 and 3,600 meters above sea level. Tree, standing deadwood, regeneration, and coarse woody debris data were collected. Seven tree species assemblages were distinguished by Hierarchical Cluster Analysis and Indicator Species Analysis, representing five previously undescribed tree species associations with unique set of consistent species. Principal Component Analysis revealed two transitional pathways of species dominance along an altitudinal gradient, highly determined by relative topographic position. The level of stand stratification varied within a very wide range, corresponding to physiognomic composition. Rotated-sigmoid and negative exponential diameter distributions were formed by overstorey species with modal, and understorey species with negative exponential distribution. Overstorey dominant species showed extreme nurse log dependence during regeneration, which supports the formation of their modal distribution by an early natural selection process. This allows the coexistence of overstorey and understorey dominant species, increasing the sensitivity of these primary ecosystems to forest management.

Ecoregion Classification using Multi-Hierarchy of Environmental Factors (환경요인의 다계층성을 고려한 생태지역 분류)

  • Jeong, Gwan Yong;Yang, Hee Moon;Kim, Suk Kuwon;Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.5
    • /
    • pp.654-676
    • /
    • 2012
  • This study aims to develop an ecoregion classification using a multi-hierarchy of environmental factors for spatial patterns in the capacities and potentials of ecological systems in mountain regions. To achieve the objectives, we describe the spatial distribution of environmental factors and identify the multi-hierarchy of these factors using spatial statistics. Lastly, we assess ecosystem-units using both a forest type map (yung & kung) and a forest soil map in order to present a ecoregion classification. This study was performed at a $1,168km^2$ area in Gangwon-do, Korea. Sedimentary rocks, particularly limestone (36.6%) exist in high proportions in the research area. While higher mountains are present in the north and central Korean peninsula, plain areas show large proportions along Odae and Pyeongchang river. In a multi-hierarchy, geology and elevation are identified as upper levels and landform classification (surface curvature, upslope area) is considered as a lower level. 'Geology+elevation+landform' shows equally higher ${\chi}^2$ values than that of other classifications and we map ecoregions based on this result. Uniqueness of environmental characteristics in the research area such as high proportions of sedimentary rocks and higher elevations influences our ecoregion classification. We are looking forward to considering this study as an effective approach to integrating various ecological themes for mountain ecosystem management.

  • PDF