• Title/Summary/Keyword: ecofriendly

Search Result 112, Processing Time 0.017 seconds

Forecasting Leaf Mold and Gray Leaf Spot Incidence in Tomato and Fungicide Spray Scheduling (토마토 재배에서 점무늬병 및 잎곰팡이병 발생 예측 및 방제력 연구)

  • Lee, Mun Haeng
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.376-383
    • /
    • 2022
  • The current study, which consisted of two independent studies (laboratory and greenhouse), was carried out to project the hypothesis fungi-spray scheduling for leaf mold and gray leaf spot in tomato, as well as to evaluate the effect of temperature and leaf wet duration on the effectiveness of different fungicides against these diseases. In the first experiment, tomato leaves were infected with 1 × 104 conidia·mL-1 and put in a dew chamber for 0 to 18 hours at 10 to 25℃ (Fulvia fulva) and 10 to 30℃ (Stemphylium lycopersici). In farm study, tomato plants were treated for 240 hours with diluted (1,000 times) 30% trimidazole, 50% polyoxin B, and 40% iminoctadine tris (Belkut) for protection of leaf mold, and 10% etridiazole + 55% thiophanate-methyl (Gajiran), and 15% tribasic copper sulfate (Sebinna) for protection of gray leaf spot. In laboratory test, leaf condensation on the leaves of tomato plants were emerged after 9 hrs. of incubation. In conclusion, the incidence degree of leaf mold and gray leaf spot disease on tomato plants shows that it is very closely related to formation of leaf condensation, therefore the incidence of leaf mold was greater at 20 and 15℃, while 25 and 20℃ enhanced the incidence of gray leaf spot. The incidence of leaf mold and gray leaf spot developed 20 days after inoculation, and the latency period was estimated to be 14-15 days. Trihumin fungicide had the maximum effectiveness up to 168 hours of fungicides at 12 hours of wet duration in leaf mold, whereas Gajiran fungicide had the highest control (93%) against gray leaf spot up to 144 hours. All the chemicals showed an around 30-50% decrease in effectiveness after 240 hours of treatment. The model predictions in present study could be help in timely, effective and ecofriendly management of leaf mold disease in tomato.

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.