• Title/Summary/Keyword: eco-friendly insulation

Search Result 77, Processing Time 0.025 seconds

Preliminary Study for Vision A.I-based Automated Quality Supervision Technique of Exterior Insulation and Finishing System - Focusing on Form Bonding Method - (인공지능 영상인식 기반 외단열 공법 품질감리 자동화 기술 기초연구 - 단열재 습식 부착방법을 중심으로 -)

  • Yoon, Sebeen;Lee, Byoungmin;Lee, Changsu;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.133-134
    • /
    • 2022
  • This study proposed vision artificial intelligence-based automated supervision technology for external insulation and finishing system, and basic research was conducted for it. The automated supervision technology proposed in this study consists of the object detection model (YOLOv5) and the part that derives necessary information based on the object detection result and then determines whether the external insulation-related adhesion regulations are complied with. As a result of a test, the judgement accuracy of the proposed model showed about 70%. The results of this study are expected to contribute to securing the external insulation quality and further contributing to the realization of energy-saving eco-friendly buildings. As further research, it is necessary to develop a technology that can improve the accuracy of the object detection model by supplementing the number of data for model training and determine additional related regulations such as the adhesive area ratio.

  • PDF

Efficiency of Energy Performance Improvement by Retrofit in existing Buildings (기존 건축물의 리트로핏에 따른 에너지 성능개선 효과 분석)

  • Kim, Dong-Hee;Moon, Hyunseok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.126-127
    • /
    • 2016
  • The Korean government has developed and strengthened energy related regulations to pursue eco-friendly buildings since 1979. However, required design standards for energy based quantitative studies focused on energy performance in existing buildings are meagered. Therefore in this study, required energy performance by design standards for energy are analyzed. And a energy performance by retrofits for insulation improvement is studied using energy simulations.

  • PDF

Development of Multiple Layers Insulation for SOFC (SOFC를 위한 고온용 적층단열재 개발)

  • CHOI, CHONGGUN;HWANG, SEUNG-SIK;CHOI, GYU-HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.386-392
    • /
    • 2018
  • Fuel cells are known as eco - friendly energy facilities that can use heat energy and electric energy at the same time. Fuel cells are classified according to the temperature and material used, and solid oxide fuel cell (SOFC) is relatively high temperature ($700-800^{\circ}C$). SOFC requires a hot box consisting of a high temperature stack, a reformer, a burner, and the heat exchangers in order to use energy efficiently. The hot box needs to maintain heat insulation performance at high temperature to reduce heat loss. However, Fibrous insulation, which is widely used, needs to be improved because it has a disadvantage that the thermal conductivity is rapidly increased due to the increase of temperature. Therefore, this study was carried out to develop a thermal insulation, which is applied to multiple layers insulation (MLI) technic, that can be used under SOFC operating conditions and prevent a drastic drop in thermal conductivity at high temperature. The developed insulation is consist of a thermally conductive material, a spacer, and a reflective plate. The thermal conductivity of the insulation was measured by in the thermal conductivity measuring device at high temperature range. As a result, it was confirmed that the developed layers insulation have an good thermal conductivity (0.116 W/mK) than fibrous insulation (0.24 W/mK) as a radiation shielding effect at a high temperature of 1,173 K.

AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer (친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

Comparative Analysis of PD Characteristics Under SF6, g3 and Dry Air Insulation (SF6, g3 및 Dry Air 절연에서 PD 특성 비교 분석)

  • Shin, Han-sin;Kim, Nam-Hoon;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.490-494
    • /
    • 2020
  • Sulphur hexafluoride (SF6) is mostly used as a current-insulating medium in gas-insulated switchgears (GIS), owing to its excellent dielectric strength and arc-extinguishing performance. The global warming potential (GWP) of SF6, however, is 23,900 times that of CO2, and its life time in the atmosphere is 3,200 years. For these reasons, new eco-friendly gases to replace SF6 are required. In this study, the partial discharge (PD) characteristics of green gas for grid (g3) and dry air (N2/O2) were analyzed to compare with those of SF6. A PD electrode system was designed to simulate the protrusion defect in GISs and fabricated for experimentation. To compare the PD characteristics of each gas, the discharge inception voltage (DIV), discharge extinction voltage (DEV), discharge magnitude, discharge pulse number, and phase pattern were analyzed. Results from this study are expected to provide fundamental materials for the design of eco-friendly GISs.

Surface Discharge Characteristics in Dry-Air on Laminated Epoxy Solid Dielectrics and Conductive Particle (적층된 에폭시 고체유전체와 도전성 파티클에 대한 Dry-Air의 연면방전특성)

  • Lim, Dong-Young;Jeon, Jong-Cheul;Bae, Sungwoo;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • This paper presents the surface discharge characteristics in Dry-Air on laminated epoxy solid dielectrics and conductive particles in order to provide the valuable information for the insulation design of eco- friendly gas insulated switchgear. To improve insulation performance, the three types of the laminated epoxy solid dielectrics were proposed, and it was revealed that their surface discharge characteristics were similar to the bakelite dielectrics of same-laminated types. From the surface discharge characteristics of dry air, it was demonstrated that the effect of conductive particles on surface discharge voltage was dominant when there are this particles at the shortest electrode gap and that the degradation of insulation performance on the conductive particles was evident in epoxy than teflon. These phenomena were interpreted in terms of particle-triggered discharge mechanism and electric field of triple junction, respectively.

Properties of Functional Heating Paints according to Additional Ratio of Activated Clay (활성백토 첨가율에 따른 기능성 발열도료의 특성)

  • Lee, Ju-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.35-36
    • /
    • 2023
  • Safety management of steel frame members is a very important part to maintain safety and function. However, precise inspection is not possible for steel frame members due to finishing materials and insulation materials, leading to poor inspection. For steel members, an insulating spray coating method is used for high thermal conductivity. The insulation spray method is not only uneconomical, but also has the disadvantage of spoiling the aesthetics. In addition, VOCs are released from paints used in spraying, so a solution is needed. In this study, heating paint was used to improve the disadvantages of the insulation spray coating method and the high thermal conductivity of steel frame members. In addition to this, in order to reduce VOCs generated from the paint, active clay was added to produce a functional exothermic paint, and then the experiment was conducted. As the amount of activated clay increased, the film thickness increased, and the VOCs emission and thermal conductivity decreased.

  • PDF

A Study on Examples of Eco-Friendly School Design - Focusing on School Facilities in USA, Japan and Korea - (학교건축의 친환경적 계획수법에 대한 사례연구 - 미국, 일본, 한국의 학교건축을 중심으로 -)

  • Lee, Ji-Young;Lee, Kyung-Sun
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • This study aims to identify differences and lessons in eco-school planning techniques and sustainable design methods by analyzing comparatively green building certification system and the cases of sustainable schools in US, Korea and Japan. As a result of the comparative analysis, green building certification system for school facilities, both domestic and international, is categorized into external environment, energy, materials and resources, and indoor environment. From the case study, it is common that roof garden and biotopes are installed for external environment, while energy saving, passive energy utilization methods for natural lighting and ventilation such as arrangement planning, courtyard, top-light, shading devices, solar panel and insulation by roof garden are most frequently used. Also, storm water uses, water saving equipment and sustainable materials are often introduced for resource savings. Concerns for indoor environment is frequently addressed by introducing natural light and ventilation in the buildings, which makes ultimately a comfortable space.

  • PDF

Field Survey of Insulation Performance Analysis in Rural Houses (농촌주택 단열성능 분석 현장연구)

  • Kwon, Soon chan;Kim, Eun Ja;Lim, Chang Su;Park, Mi Jeong;Choi, Jin Ah
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.spc
    • /
    • pp.703-714
    • /
    • 2016
  • Dwelling environments that can help elderly farmers to live more safely, independently, and conveniently are becoming more and more important. Many rural houses are built without any particular architectural or energy-related criteria, so most of them have poor insulation. The construction technology used is also not precise, which increases the loads for heating and cooling. Therefore, rural houses need to be improved. Also, there is more and more need for plans to realize eco-friendly dwellings, so the principle of nature-oriented plans related to the direction, insulation, or landscaping of a house is being emphasized. Insulation is one of the most effective ways to save energy for heating and cooling. This preliminary study to improve the insulation of rural houses examined three regions in South Korea: the central region, the southern region, and the Jeju Island. A field investigation was conducted on a total of 18 houses, including six from each town in the selected regions. The information was used to figure out the current status of rural houses and the characteristics of the buildings. The main living spaces are the living room for the central region and the main room in the southern region and Jeju Island. The southern regions are plane shapes surrounded by rooms, and all ventilation is accomplished by windows. The studied houses were mostly masonry structures with slate rooftops. Additions and improvements included room expansions and bathroom interior installations.

Impulse Breakdown Behaviors of Dry Air as an Alternative Insulation Gas for SF6

  • Li, Feng;Yoo, Yang-Woo;Kim, Dong-Kyu;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.24-32
    • /
    • 2011
  • [ $SF_6$ ]gas, which has an excellent dielectric strength and interruption performance, is used in various applications such as gas insulated switchgear (GIS) in substations. However, since $SF_6$ has a high global warming potential (GWP), it is necessary to find an eco-friendly alternative insulation gas. In order to examine the possibility of using alternative insulation gases for $SF_6$ in power distribution system equipment, the dielectric strength and physical phenomena of dry air in a quasi-uniform electric field are investigated experimentally in this paper. As a result, the breakdown voltages for positive polarity are higher than those for negative polarity under impulse voltage applications. The negative 50[%] flashover voltage, $V_{50}$ of dry air under conditions above 0.4[MPa] gas pressure, is higher than 150[kV], that is the basic impulse insulation level of distribution equipment. The $V_{50}$ increases linearly with increasing the gas pressure, regardless of the waveform and polarity of the applied impulse voltages. The voltage-time curves are dependent on the rise time of the impulse voltage and gas pressure. Furthermore, streamer discharge was observed through light emission images by an ICCD camera under impulse voltage applications.