• Title/Summary/Keyword: eco-friendly building material

Search Result 93, Processing Time 0.023 seconds

Applications and Prospects of Calcium Carbonate Forming Bacteria in Construction Materials (건축공학분야에서 탄산칼슘형성세균의 응용과 전망)

  • Park, Sung-Jin;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • Microbiological calcium carbonate precipitation (MCCP) is being applied for the aesthetic restoration of cement buildings destroyed by biochemical processes and to block water penetration into the cement's inner structure. After determining the advantages of this technique, many related studies in the area of architecture concerning the application of microorganisms to improve construction material have been reported in both America and Europe. The techniques compatibility with cement material is especially interesting because of the needed screening of various calcium carbonate forming-bacteria and the required development of their application methods. The purpose of this review is to describe the mechanism of MCCP and related researches with eco-friendly construction materials. Mainly, we describe the methodological studies focused on biodeposition on the surface of building materials and the research trends concerning the addition of microorganisms to improve the durability of cement structures. Additionally, the concepts and technical aspects focused on the development of self-healing smart concrete, with the use of multi-functional bacteria, have been considered.

Preparation of Natural Wall Paint by Using Sericite Clay (견운모를 이용한 벽마감용 천연페인트 제조)

  • Kim, Munui;Lalhmunsiama, Lalhmunsiama;Lee, Seung-Mok;Jin, Kang-Jung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.501-505
    • /
    • 2017
  • Due to the rapid urbanization and increased population, there is an increase in airtight nature of buildings which causes serious indoor air pollution. Among several indoor air pollutants, volatile organic compounds (VOCs) emitted from paint are of major concern. Therefore, there is an urge for the development of environmental friendly paint products. In this wok, a natural wall paint (NWP) was prepared by utilizing a natural clay material "sericite" as a main component. A small chamber test was carried out to identify the toxic substances release from NWP and the results were compared with two eco-friendly commercial paints. The total VOCs were detected in trace level inside the test chamber and their concentrations were below the recommended indoor air quality standards. Toluene was not detected for NWP, whereas formaldehyde was observed in trace level. The toxicity index results were compared with two commercial paints and found that NWP exhibited less harmful gas emission. Based on certification rating of building materials, NWP can be classified as the first grade of building materials. Due to the above advantages, the use of sericite as a major component in NWP will be a useful technique to maintain the indoor air quality.

Experimental Study of Thermal Conductivity for Glass Wool by Inserted Dissimilar Materials based on Structural Composites (구조 복합재료 기반 이종재료 첨가시의 유리섬유의 열적 성능 평가에 대한 실험적 연구)

  • Bae, Jin-Ho;Oh, Jong-Ho;Byun, Jun-Seok;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.448-455
    • /
    • 2018
  • Glass wool is an eco-friendly materials that is manufactured through a continuous process by processing waste glass. This materials is low cost compared with another materials and has excellent thermal conductivity. For this reason, glass wool is installed as insulation system for LNG carriers and as insulation of building wall as well as various industries. The mechanism of insulation of glass wool is the conduction of the wool itself and convection by space between fibers. Therefore, in order to develop the enhanced thermal conductivity of glass wool is necessary to reduce its own conduction or to insert additional material after manufacturing as well as prevent convection. In this respect, many researchers have been actively studying to decrease thermal conductivity of polyurethane foam using by inserted glass wool or change the chemical component of glass wool. However, many research are aiming reduction of glass wool itself. This study focus on post-processing and inserted different materials; silica-aerogel, kevlar fiber 1mm, 6mm and glass bubble. Experimental results show that the thermal conductivity almost decreases with the addiction of glass bubble and silica aerogel.

An Optimization Algorithm of Gypsum Board Loss for Wall Finishing in Modular Construction System (모듈러건축 벽체마감 석고보드 손실 최적화 알고리즘 개발)

  • Lee, Dong-Min;Chin, Sangyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • The ministry of Land, Infrastructure and Transport announced that they launched the pilot project to offer Happy House built with modular construction as part of the major projects of incumbent government in 2013. The market size of modular construction is getting increasingly enlarged together with strong will of government. The major challenges that current modular construction encounters can be summed up as lack of standardization of material on the stage of design and fabrication. The portion of material costs in modular construction marks 16 to 17% higher than the existing other construction method, and account for 60 % of total construction cost, which is why material management is the most important factor. However, the imperfect standardization and specification on design causes high loss of materials on fabrication, which makes the construction wastes and total construction cost increasing in accordance with the increase of material costs. This study has been conducted to verify major modules by developing optimization algorithm on gypsum board material among wall finishing materials. It is expected that this paper contributes not only to eco-friendly construction by minimizing the waste factors of materials through these efforts, but also to removing high cost issues which had been recognized as a setback of current modular construction.

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.

A Study of Radon Reduction using Panel-type Activated Carbon (판재형 활성탄을 이용한 라돈 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Jun, Jae-Hoon;Yang, Seung-Woo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Recently, building materials and air purification filters with eco-friendly charcoal are actively studying to reduce the concentration of radon gas in indoor air. In this study, radon reduction performance was assessed by designing and producing new panel-type activated carbon filter that can be handled more efficiently than conventional charcoal filters, which can reduce radon gas. For the fabrication of our panel-type activated carbon filter, first the pressed molding product after mixing activated carbon powder and polyurethane. Then, through diamond cutting, the activated carbon filter of 2 mm, 4 mm and 6 mm thickness were fabricated. To investigate the physical characteristics of the fabricated activated carbon filter, a surface area and flexural strength measurement was performed. In addition, to evaluate the reduction performance of radon gas in indoor, the radon concentration of before and after the filter passes from a constant amount of air flow using three acrylic chambers was measured, respectively. As a result, the surface area of the fabricated activated carbon was approximately $1,008m^2/g$ showing similar value to conventional products. Also, the flexural load was found to have three times higher value than the gypsum board with 435 N. Finally, the radon reduction efficiency from indoor gas improved as the thickness of the activated carbon increases, resulting in an excellent radon removal rate of more than 90 % in the 6 mm thick filter. From the experimental results, the panel-type activated carbon is considered to be available as an eco-friendly building material to reduce radon gas in an enclosed indoor environment.

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

A Study on Mechanical Characteristics of Masonry Structure Constructed by Clay Brick with Lime Mortar (점토벽돌과 석회모르타르를 사용한 조적구조의 역학적 특성에 관한 연구)

  • Yu, Hye Ran;Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.87-98
    • /
    • 2011
  • Clay bricks with lime mortar are recently popular since they are eco- and environment-friendly construction material being capable of air flow and moisture movement. However, there is little study on those of clay brick an lime mortar while relatively many researches on the structural characteristics of concrete bricks with cement mortar are available in Korea. Furthermore, the current Korean Building Code of masonry structures was established on the base of the Foreign Codes which does not reflect Korean masonry construction circumstance, such as material characteristics and section properties. To overcome these problems, experiments of masonry structures constructed using clay bricks with lime mortar were carried out to evaluate their structural characteristics such as, prism compressive strength, adhesive strength and diagonal tensile(shear) strength. Also this research compares the mechanical characteristics between clay bricks with lime mortar and concrete bricks with cement mortar to provide information that will be used for revisions of the domestic standards for masonry structures. As masonry structures constructed with clay bricks and lime mortar show different aspects over the ones constructed with concrete bricks and cement mortar, we suggest estimation equation of prism compressive strength and diagonal tensile strength on masonry structures constructed with clay bricks and lime mortar.

A study on the Changes in form and spatial uses of Urban Hanok in Bukchon, Seoul (서울 북촌한옥의 변화양상에 관한 연구 - 북촌 가꾸기 사업에 따른 2002~2007 한옥 대수선 사례를 대상으로 -)

  • Song, In-Ho;Kim, Young-Soo;Cho, Eun-Joo
    • Journal of architectural history
    • /
    • v.18 no.2
    • /
    • pp.47-63
    • /
    • 2009
  • This study focused on changes in form and spatial uses of Urban Hanok in Bukchon, Seoul. There are 10 representative cases which have been renovated through the policy of 'Preservation & Regeneration of Bukchon' by Seoul metropolitan government and other experts. Changes in form and spatial uses of Urban Hanok in Buckon are as follows. First, Changes of scale. Trough removing extension parts, facade of renovated Hanoks are 'transformed' into recovering their identity. Using basements or lofts, intensive application of spaces is transformation which promotes the vitality of Hanoks. Second, changes of space organization. As Hanok changes its function from residence to commercial or cultural use, il a1so changes space character or reorganizes space organization. It is important that deciding function of Hanok has to adjust its scale and organization. Third, changes of construction performance. Through introducing new material and constructing method, performance of wall has been changed respecting its wooden structure and interior-exterior figure. However, technical studies must back it up not to destroy its value of eco-friendly architecture. Fourth, changes of facility systems, like floor heating system. They changes floor level of Hanok equally, and then sections of Hanok have became simple. Furthermore, inserting new facility space, such as boiler room, stand-up kitchen, bathroom and toilet, organization of space also changed. It is necessary that wise alternative proposal through the method of transformation or mutation must be presented. These four changes can be classification into method of 'transformation' and 'mutation'. Changes of scale are method of transformation and changes of space organization are method of mutation. Also, while changes of construction performance are mutation, changes of facility systems are transformation. Recently, as price of lots have been increased, a lot of Hanoks have been commercialized. Thc commercial energy threat 'the identity of Bukchon as residential area'. From now on, to operate 'identity' and 'vitality' complementary, it is necessary to make up for the preservation policy of Hanok and consolidate renovating standards of Hanok which correspond to character of particular region and building usage.

  • PDF

A Study on the Linoleum of the Deoksugung and Changdeokgung Palaces in the Early 20th Century: focusing on its manufacturing process, characteristics, and usage (20세기 초 덕수궁·창덕궁에 유입된 리놀륨(Linoleum) 바닥재 연구: 리놀륨의 제작 방식과 특성 및 사용을 중심으로)

  • Choi, Jihye
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.18-31
    • /
    • 2021
  • Linoleum is a resilient, hygienic, and eco-friendly floor covering. It was developed in England by Frederick Walton in 1863. Made of cork flour, linseed oil, and burlap as its main materials, the flexible and waterproof linoleum became globally popular in the early 20th century. Unlike the vinyl coverings, the burlap-backed linoleum was used not only in commercial spaces but also in household areas like kitchens, bathrooms, and even living rooms. As a global product, linoleum was imported and used in Korean palaces like Deoksugung and Changdeokgung in the early modern period. According to the record Deoksugung Won-Ahn, linoleum was applied to the major buildings, including Hamnyeongjeon, Deokhongjeon, and Jeonggwanheon, and various other venues. The linoleum used in these places are mainly monochrome blue and brown color, which probably means that they are from England. The trade records in the early 20th century show that linoleum was imported mainly from England and America. The Ewangjik building floor plan in the Changdeokgung Palace shows that linoleum was used extensively. There are even some originals, which were laid in 1920 and left in the Changdeokgung Palace. When Daejojeon and Huijeongdang were rebuilt in 1920, the interior was outfitted with western features and linoleum was used in areas such as bathrooms, the tonsorial parlor, and one of the rooms on the west side of Huijeongdang. In situ in the Daejojeon and Huijeongdang areas in the Changdeokgung Palace are monochrome, patterned black, and stylized floral tile patterned, which are closely similar to American products made by ALC and Armstrong company. This study will help us better understand linoleum's characteristics, its uses and the material itself. It will also form the basis for the restoration of Changdeokgung Palace as well as other modern interiors with linoleum flooring in the future.